ADMINISTRATIVO - MONITORES
Cristian Andrés González:
Lunes de 9am a 11am en el salón 404-206
Camila Grass:
Martes y jueves de 9am a 11am en el salón 405-312
Leidy Johana Angel:
Miércoles de 11am a 1pm en el salón 404-206
Julian López:
Miércoles de 1pm a 3 pm en el salón 404-206
Luisa Fernanda Parra:
Martes y jueves de 6pm a 8pm en el salón 405-313
¿PREGUNTAS?
• Ya poseemos el 30% de las nota final de esta clase.
• Para esta clase, ¿Qué deben leer?
• Ritchey, Estadística para las ciencias sociales Cap. 6 y7
• Blanco, Probabilidad, Cap. 1
• Haber, Runyon. Estadística General. Cap 11
• El taller 3 es un quiz, el taller solo es para prepararlos.
• ¿ Hacemos un horario de atención extra antes del
quiz?
TODO ESPACIO MUESTRAL DEBE CUMPLIR ESTAS CONDICIONES
Definiendo  = 
1. P () = 1
2. P ( ) = 
3. Siendo  ,  , … .  
( ∪  ∪ … ∪ . ) =   + P(  ) … P (. )
TODO ESPACIO MUESTRAL DEBE CUMPLIR ESTAS CONDICIONES
Definiendo  = 
1. P () = 1
2. P ( ) = 
3. Siendo  ,  , … .  
( ∪  ∪ … ∪ . ) =   + P(  ) … P (. )
BIBLIOGRAFÍA: Blanco, Liliana. Probabilidad.
Capítulo 1,Página 25.
Ejemplo 1: Se lanzan dos dados corrientes una vez.
Definamos:
 ≔         6
 ≔    
  ≔?/36
  ≔?/36
¿Cuál es la probabilidad de que al menos uno de los resultados sea 6 y que los
resultados sean diferentes?
  ∩  =?/36
BIBLIOGRAFÍA: Blanco, Liliana. Probabilidad.
Capítulo 1,Página 25.
Ejemplo 2: Una urna contiene 12 bolas de las cuales 8 son blancas. Se extrae una
muestra de tamaño 4 sin reemplazo y en orden.
Sea,
 ≔      í  .
 ≔       í  .
¿  ∩ =?
EJEMPLO TABLERO
BIBLIOGRAFÍA: Blanco, Liliana. Probabilidad.
Capítulo 1,Página 24.
Probabilidad Condicional: Teniendo un experimento aleatorio. Si A y
B son eventos y pertenecen al espacio muestral. Entonces
definimos la probabilidad condicional como:
(  ∩ )
  =
()
BIBLIOGRAFÍA: Blanco, Liliana. Probabilidad.
Capítulo 1,Página 24.
Probabilidad Condicional: Teniendo un experimento aleatorio. Si A y B
son eventos y pertenecen al espacio muestral. Entonces definimos
la probabilidad condicional como:
  =
(  ∩ )
()
¿PARA QUÉ NOS SIRVE?
Nos ayuda a calcular la probabilidad del evento B, dado que el evento A
pasará seguramente.
¿PARA QUÉ NOS SIRVE?
Nos ayuda a calcular la probabilidad del evento B, dado que el
evento A pasará seguramente.
EJEMPLO:
Evento seguro: Su amigo saco mas de 4 en el parcial de ESF.
Evento No seguro: La nota suya en el parcial
Probabilidad Condicional: ¿ Cuál es la probabilidad de que usted
saque más de 4 en el parcial teniendo en cuenta que se
copiaron?
¿PARA QUÉ NOS SIRVE?
Nos ayuda a calcular la probabilidad del evento B, dado que el evento A
pasará seguramente.
EJEMPLO:
Evento seguro: Hoy llovió a cántaros.
Evento No seguro: La probabilidad de lluvia el día de mañana
Probabilidad Condicional: ¿ Cuál es la probabilidad de que llueva dado
que el evento de que llueva hoy con el evento de que llueva mañana
no son independientes?
¿PARA QUÉ NOS SIRVE?
Nos ayuda a calcular la probabilidad del evento B, dado que el evento A
pasará seguramente.
EJEMPLO:
Evento seguro: Su nueva novi@ le puso los cachos al ex.
Evento No seguro: Le van a poner los cachos a Usted.
Probabilidad Condicional: ¿ Cuál es la probabilidad de que le pongan los
cachos a Usted teniendo en cuenta que la conducta de infidelidad
se mantiene a través del tiempo?
BIBLIOGRAFÍA: Blanco, Liliana. Probabilidad.
Capítulo 1,Página 24.
TEOREMA DE PROBABILIDAD TOTAL

  =
   ( )
=
REGLA DE BAYES
 | =
  (| )

=    ( )
Ejemplo 1: Se tira un dado y sabemos que la probabilidad de que salga un 2 es
1/6 (probabilidad a priori). Si incorporamos nueva información (por ejemplo,
alguien nos dice que el resultado ha sido un número par) entonces la
probabilidad de que el resultado sea el 2 ya no es 1/6.
Ejemplo 2: En un estudio sanitario se ha llegado a la conclusión de que la
probabilidad de que una persona sufra problemas coronarios (suceso B) es
el 0,10 (probabilidad a priori).
Además, la probabilidad de que una persona sufra problemas de obesidad
(suceso A) es el 0,25 y la probabilidad de que una persona sufra a la vez
problemas de obesidad y coronarios (suceso intersección de A y B) es del
0,05.
Calcular la probabilidad de que una persona sufra problemas coronarios si está
obesa (probabilidad condicionada P(B/A)).
Ejemplo 3: probabilidad de que al tirar un dado salga el número 2,
condicionada a que haya salido un número impar.
Ejemplo 4: Una pareja de recién casa dos ha decidido formar una
familia de solo tres hijos, a. determine la probabilidad de que
tenga puros hijos varones, b. ¿cuál es la probabilidad de que
tenga como máximo un hijo varón, c. ¿cuál es la probabilidad de
que su segundo hijo sea varón,
d. Si esta familia tiene por lo
menos una hija, ¿cuál es la probabilidad de que el segundo hijo
sea varón?
Ejemplo 5: Según las estadísticas, la probabilidad de que un auto
que llega a cierta gasolinera cargue gasolina es de 0.79,
mientras que la probabilidad de que ponga aceite al motor es de
0.11 y la probabilidad de que ponga gasolina y aceite al motor es
de 0.06, a. Sí un auto carga gasolina, ¿cuál es la probabilidad de
que ponga aceite?, b. Sí un auto pone aceite al motor, ¿cuál es la
probabilidad de que ponga gasolina?
Ejemplo 6: Una mujer es portadora de la enfermedad de Duchenne
¿Cuál es la probabilidad de que su próximo hijo tenga la
enfermedad?
Ejemplo 7: Se sabe por estudios previos que el 0,1% de
la población tiene problemas vasculares. Un estudio
sobre individuos con problemas vasculares revela que
el 20% de ellos son placas de ateroma. Si el 10% de
los individuos con placas de ateroma y problemas
vasculares están expuestos a muerte súbita por
desprendimiento de trombos ¿qué probabilidad tiene
un individuo cualquiera de estar expuesto a muerte
súbita por desprendimiento de trombos de una placa
de ateroma y problemas vasculares?
Ejemplo 8: En una ciudad se llevan a cabo pruebas para
detectar cierta enfermedad. Supóngase que el 1% de
las personas sanas son registradas como enfermas,
que el 0.1% de la población está realmente enferma y
que el 90% de los enfermos son reportados como
tales. Se desea calcular la probabilidad de que una
persona, seleccionada al azar y reportada como
enferma, esté realmente enferma.
BIBLIOGRAFÍA: Blanco, Liliana. Probabilidad.
Capítulo 1,Página 32.
Probabilidad Condicional: Dos eventos A y B son independientes, si y
sólo si:
  ∩  =   ∗ ()
¿PARA QUÉ NOS SIRVE?
(  ∩ )   ∗ ()
  =
=
= ()
()
()
TALLER
PRÓXIMA CLASE (SEMANA)
Temas
Intervalos de confianza
Lecturas
Ritchey. Estadística para las ciencias
sociales. Capítulo 8. Probabilidad (FEM)
Huff, Darrel. Capítulo 3. Capítulo 4 y
Capítulo 7.
Descargar

ESF 5-11 Sesión 9