Aplicaciones del Modelo de
Variograma
Aplicaciones
Definir la variabilidad de un yacimiento.
a) Concepto de soporte
b) Varianza de dispersión (c/distintos soportes)
c) Varianza de estimación
Estimación de leyes por Kriging
 Soporte: es el término que se usa en la geoestadística para
describir el volumen en función del cual se define una ley.
 A medida que aumenta el tamaño de la muestra (o del
soporte de la muestra), la varianza de las leyes resultantes
disminuye.
 El cambio en la varianza debido al cambio en el volumen
se denomina la relación volumen-varianza.
 Existe un tamaño mínimo de bloque que se puede
seleccionar ya sea como mineral o estéril. El tamaño del
bloque se denomina la unidad minera selectiva o UMS.
 A medida que <<UMS la varianza aumenta.
Ejemplo: un área con sondajes en una cuadrícula regular de aproximadamente
8metros. En esta área, se definen las leyes de bloque en soportes diferentes
calculando el promedio de las leyes de los sondajes dentro de cada bloque.
Los tamaños de soporte seleccionados son bloques de 30 x 30 y 50 x 50 en el
plano. En todos los casos se usa una dimensión vertical de 12 m,
correspondiente a la altura del banco.
Conclusión
• ¡NO SE PUEDE ASEVERAR LAS
RESERVAS EXPLOTABLES DE UN
PROYECTO SIN FIJAR UN TAMAÑO DE
SOPORTE¡
Varianza de Dispersión
 Expresa la variabilidad de las Leyes
D 2 (0 / A ) = D 2 (v / A ) + D 2(0 / v )
•
•
•
•
D 2 : Varianza
0 : Muestras puntuales
V: Bloques
A : Area
Varianza de las muestras
puntuales en un área
=
Varianza de los Bloques del área
+
Varianza de las muestras puntuales
en los bloques
Se demostró que la Varianza disminuye al aumentar el
tamaño del soporte
 El modelo de variograma se puede usar para predecir la varianza de leyes en
un soporte de cualquier tamaño dentro de cualquier volumen.
 .
 vi es reemplazado por las leyes de los datos individuales y el término m es
reemplazado por la ley media del bloque y la varianza de dispersión se interpreta
como la varianza de las leyes de muestra dentro del bloque.
 En la primera expresión, la diferencia al cuadrado media se
computa en todos los pares de puntos que definen el volumen
v.
 Los términos en esta expresión se pueden expandir (véase
J.Sullivan,1998) para mostrar:
.
Se puede ver de la similitud de ambas expresiones que la varianza de
dispersión de las leyes de muestra dentro de un volumen es igual al
medio de la función de variograma en función del volumen. Se puede
escribir matemáticamente:
2
_
D (0 / v)   (v , v) 
1
n
n

2 n2
i =1 j=1
( z ( x i )  z ( x j ))
2
• Basado en esta relación se puede expresar cualquier varianza de
dispersión en términos de la función de variograma
Varianza de Estimación
 Mientras que la varianza de dispersión expresa la variabilidad de las leyes,
la varianza de estimación expresa la variabilidad asociada con una
estimación o, en otras palabras, expresa la varianza de los errores de
estimación.
 La varianza de estimación es una medida de la dispersión de los
errores aleatorios, ya que se requiere que el estimador no tenga ningún
sesgo y, por lo tanto, el error sistemático será cero.
 Se puede definir la varianza de estimación para cualquier tipo lineal de
estimador, no solamente para el estimador de kriging.
 La característica relevante del estimador de kriging es que el kriging
proporciona el estimador (ponderador) que minimiza la varianza de
estimación. Así que, la varianza de estimación será más pequeña cuando
se aplica el kriging.
Tipos de errores
Sistemáticos y Aleatorios
La precisión describe el error aleatorio o las fluctuaciones en torno al valor
verdadero mientras que la exactitud describe el error sistemático o el
sesgo.
 El error de estimación para un punto (E), será la diferencia
entre Z*, (la verdadera ley del punto), y la Ley (Zx) que es
resultado de su cálculo a través de leyes xi afectados por un
coeficiente Ki .
• Ε = Z* - Zx = Z* - (xi . Ki )
 Si el estimador no tiene sesgo (error sistemático nulo), la
distribución de los errores debería seguir una distribución
normal.
 El estimador usado tiene la forma :
*
zv ( x) 
n
  i z ( xi }
i 1
donde los  representan las ponderaciones asignadas a cada
dato. La única restricción para las ponderaciones es que
sumen uno,
 La varianza de estimación va a depender de las distancias estadísticas (Y),
promedio entre los datos y el bloque. Puesto que el modelo de variograma
es una función creciente, el error de estimación aumenta o diminuye con las
distancias desde las muestras al centro del bloque.(es lo que expresa el 1er
término de la fórmula) .
 El segundo término de la expresión involucra el promedio de la función del
variograma entre las ubicaciones de las muestras. Este término es negativo, así que
la varianza de estimación disminuye a medida que este término aumenta (datos
distanciados). Si los datos se encuentran agrupados, las muestras básicamente
investigarán el mismo punto en el espacio y, como consecuencia, mucha de la
información se hará redundante (aumenta la varianza de estimación).
 El tercer término examina el promedio de la función del variograma dentro del
bloque mismo. A medida que aumenta el tamaño del bloque, también aumenta ese
término, reduce la varianza de estimación.
MÉTODO GEOESTADÍSTICO
KRIGEADO
• La geoestadística ofrece un método de estimación de
reservas, usando el variograma, llamado
krigeado.
Se utiliza en la evaluación de yacimientos para estimar el
valor de una variable regionalizada, en un punto o en un
bloque, a partir del uso de factores de ponderación.
• El método se caracteriza por ser el mejor estimador lineal,
insesgado de la variable.
• Mejor: por que los factores de ponderación se determinan
de tal forma, que la varianza de estimación es mínima .
• Lineal: por que es una combinación lineal de la información.
• Insesgado: por que en promedio el error es nulo.
Krigeado Puntual
• Método de Cálculo: primero hay que determinar los factores de
ponderación, para obtener el valor de la variable.
• Estos factores se calculan a partir de un sistema de
ecuaciones, en que las incógnitas para resolver se obtienen a
partir del variograma.
• Variable buscada←Z *=∑ W x Z → variables dadas
↓
• Ponderador a determinar
• ↓
• [ C ].[ W ] =[ D ]
• C = varianza de los puntos conocidos (en función de la distancia).
• D = varianza de los puntos conocidos y el punto a estimar.
• Resumiendo las ecuaciones están formadas por tres
tipos de componentes:
• A) Los factores de ponderación (W).
• B) Los factores que multiplican a W ; Yh de variables
conocidas.
• C) Los valores de Y0 del punto cuestión y los conocidos.
• La diferencia con inverso a la distancia es que en el
Krig. Se utilizan las distancias estadísticas, no la
geométricas.
 Con efecto pepita puro : no se puede usar Krig.
 Con efecto pepita >>: aumenta la varianza del Krig.
 Con alcance >>: disminuye la varianza del Krig.
Ejemplo de un krigeado (puntual)
• Un conjunto de 4 muestras de un yacimiento de cinc, cuyas
leyes son: X1 8,2% - X2 ,9,6%- X3 ,13,15%- X4 ,6,3%. El
variograma a considerar se ajusta a un modelo esférico con
alcance 250 m; C0 17 y C 66. Calcular utlizando el krigeado
el valor de X0.
 El primer paso es calcular las distancias geométricas
existentes entre los puntos conocidos y entre estos y el
punto a estimar ?
 Luego con el modelo de Varianza o Covariaza (λ-C)
y la tabla de distancias, se calculan las matrices [ C]
y [ D].Se transforman las distancias geométricas en
estadísticas.
 Calculados los valores de las matrices [ C] y [ D], el
objetivo es obtener los valores de los ponderadores W,
que es la incógnita, para eso debe calcularse la matriz
inversa de C ► C -1
 El siguiente paso para obtener los ponderadores W, es
multiplicar cada lado de la ecuación por C -1 .
W = C -1 x D
Krigeado de Bloques
• El valor obtenido se le asigna a un bloque y no a un punto.
• Para determinar el valor de un bloque se lleva a cabo una
discretización del área en un conjunto de puntos ( x ej: 2x2;3x3 ;
4x4)
• Los valores que se obtienen con el krigeado, llevan los
correspondientes valores de la varianza de estimación,
lo que permite hacer un estudio de la bondad de
estimación.
• Estos valores pueden ser interpolados y confeccionar un
mapa de isovarianzas.
• Annels (1991), propone establecer diferentes tipos de
reservas en base a los valores de varianza del krigeado.
•
•
•
•
Varianza
0-0,0075
0,0075-0,0135
>0,0135-
Categoría
Reservas probables
Reservas posibles
Reservas inferidas
• El resultado se puede proporcionar por bloques o bien
por isolíneas a partir de los bloques.
• Para el cálculo de reserva de cada bloque, se deberá
multiplicar su superficie x potencia x densidad.
• Las reservas totales se pueden determinar:
• Estimando el tonelaje y el error de estimación.
• Estimando la ley media y el error de estimación.
Bibliografía
• Bustillo Revuelta, M. y López Jimeno, C., 1997: Manual de evaluación
y diseño de explotaciones mineras. Madrid. ISBN 84-921708-2-4 .
• ANNELS, A. E. (1991). Mineral deposit evaluation. A practical
approach. Ed. Chapman & Hall, London.
• TULCANAZA,E. (1992). Técnicas geoestadísticas y criterios técnicoeconómicos para la estimación y evaluación de yacimientos mineros..
E.Tulcanaza, Santiago, Chile.
• Jeff Sullivan 1998. Curso Geoestadística para Minería. Codelco
Santiago d e Chile.
Descargar

Aplicaciones del Modelo de Variograma