Cristales
Sal de
Mesa
Azucar
Hielo
Cristal de
Roca
(Cuarzo)
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Cristales
Son sólidos que presentan estructuras
geométricas reconocibles y atractivas.
Poseen una composición constante.
Presentan propiedades definidas y
frecuentemente distintas de la de los sólidos
no cristalinos.
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Cristales Naturales
Azufre
Fluorita
Calcita
(CaCO3)
Pirita
(FeS2)
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Cristales Preparados
Galio
Insulina
Proteina
(Elastasa
Porcina)
[Mn12O12(O2CCHCl2)16(H2O)4
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Teorias acerca de la
estructura de los cristales
 1665 Hooke propone que los cristales estan formados
por esferas
 1801 Rene Just Haüy propone la constancia de los
ángulos entre caras
 1907 Barlow & Pope proponen que los cristales están
formados por esferas que están en contacto entre sí.
Modelo de empaquetamiento compacto de esferas
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Constancia de los Angulos
entre las Caras
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Constancia de los Angulos
entre las Caras
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Constancia de los Angulos
entre las Caras
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Constancia de los Angulos
entre las Caras
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Constancia de los Angulos
entre las Caras
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Constancia de los Angulos
entre las Caras
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Periodicidad
Repetición del arreglo de objetos
en el espacio
Llenado del espacio
Patrón repetitivo
Simetría traslacional
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Descripción de un Sistema
Periódico
Arreglo infinito de puntos ordenados
Se define un origen de coordenadas
Cada punto puede escribirse como
Rxyz (n1,n2,n3) = n1 a1 + n2 a2 + n3 a3
con ni enteros, y ai, fijos (vectores de la red)
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Red de Bravais
Unidimensional
a
0
1a
1 dimensión, una sola red posible
2a
3a
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Redes de Bravais Bidimensionales
¿De cuántas maneras se llena el plano por traslación?
5 redes bidimensionales
Oblicua
a, b sin restricciones
g sin restricciones
b
a
b
a
Rectangular
a, b sin restricciones
g = 90° (P), g s/r (C)
primitiva
centrada
Cuadrada
a=b
g =90°
b
Hexagonal
a=b
g =120°
a
a
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
¿Que Celda Elijo?
Se elige la celda mas pequeña y que conserva toda la simetría
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Sistemas Cristalinos
Tridimensionales
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
14 Redes de Bravais
CUBICA
ORTOROMBICA
MONOCLINICA
TRICLINICA
•
Tipo de celda unidad
–
–
–
–
P: Primitiva (1 pt)
I: centrada en el
cuerpo
F: Centrada en las
caras
C: centrada en los
lados
Celdas:
• Celda PRIMITIVA
c
z
– Un solo punto de la red
– Puede no presentar la simetria
total del sistema
y
x
b
a
• Celda UNITARIA
– Puede contener mas de un
punto de red
– Tiene toda la simetria de la red
c
z
y
x
b
a
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Empaquetamiento Compacto de
Esferas o
como llenar el espacio con esferas
Gauss demostró que el empaquetamiento compacto de esferas es la
forma de ocupar la mayor fracción del espacio usando in arreglo periódico
de esferas.
Kepler propuso que esta estructura era la forma de ocupar la mayor
fracción del espacio, sea el arreglo periódico o no. Esto fue demostrado
recién en 1998.
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Empaquetamiento Hexagonal
Compacto
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Empaquetamiento Cubico Compacto
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Empaquetamientos No Compactos
Bidemensionales
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Empaquetamientos No Compactos
Tridimensionales
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Empaquetamientos No Compactos
Tridimensionales
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Empaquetamientos No Compactos
Tridimensionales
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Empaquetamientos No Compactos
Tridimensionales
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
¿Como Sabemos cuál es la Estructura de un Sólido?
Difracción de Rayos X
Los planos cristalinos difractan
ZnO
(101)
• Posición de la línea: identificación
• Ancho de la línea: tamaño
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Estructura de los Metales
No solo una Estructura
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Huecos en los Empaquetamientos
Compactos
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Huecos en los Empaquetamientos
Compactos
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Tamaño de los Huecos
Octaédricos
(2r + 2h)2 = (2r)2 + (2r)2
4 (r + h)2 = 8 r2
_
_
r + h = 2 r  h/r = 2 -1 = 0,414
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Tamaño de los Huecos
Tetraédricos
Calculo la arista del cubo a2 + a2 = (2r)2 porque las esferas se tocan
_
 a = 2 r
_
_
La diagonal del cuerpo del cubo es 3 a = 6 r = 2 r + h (porque las esferas
se tocan en la diagonal 
_
h/r = (6/2 – 1) = 0.225
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Mas de un componente
Aleaciones por Sustitución
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Aleaciones Sustitucionales e
Interstiaciales
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Aleaciones y Compuestos
Intermetalicos
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Aleaciones y Compuestos
Intermetalicos
Latones
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Aleaciones y Compuestos
Intermetalicos
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Aleaciones y Compuestos
Intermetalicos
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Sólidos Iónicos
Estructuras cristalinas – 2° cuatrimestre 2008 – Qca, Gral. e Inorgánica II
Descargar

Slide 1