Introducción
Siempre que se trabaja con un fluido , existe la
necesidad de realizar un conteo de la cantidad
que se transporta, para lo cual utilizamos
medidores de flujo.
Algunos de ellos miden la velocidad de flujo de
manera directa y otros miden la velocidad
promedio, y aplicando la Ecuación de
continuidad y la de energía se calcula la
velocidad
FACTORES PARA LA ELECCIÓN DEL TIPO DE
MEDIDOR DE FLUIDO








Intervalo de medición
Exactitud requerida
Pérdida de presión
Tipo de fluido
Tipo de medición
Calibración
Medio ambiente
Lugar de ubicación
TIPOS DE MEDIDORES DE FLUJO

MEDIDORES DE CABEZA VARIABLE
*Tubo de venturi
*Placa de Orificio

MEDIDORES DE ÁREA VARIABLE
*Rotámetro
*Fluxometro de turbina
*Fluxometro de vortice
*Fluxometro electromagnético
*Fluxometro de Ultrasonido
*Fluxometro de velocidad
-Tubo de Pitot
-Anemómetro de Copas
-Anemómetro de Alambre Caliente

MEDIDORES DE FLUJO MASICO:
1. El medidor de masa inferencial que mide por lo común el flujo volumétrico del fluido y su
densidad por separado.
2. Medidor de masa “verdadero”, que registra directamente el flujo en unidad de masa.
Algunos medidores de flujo masico son:
a)
b)
c)
d)
e)
El medidor de efecto Magnus.
El medidor de momento transversal para flujo axial
El medidor de gasto de masa de momento transversal para flujo radial.
El medidor de gasto de masa de momento transversal.
El medidor térmico de gasto de masa giroscópico.
1. MEDIDORES DE CABEZA VARIABLE
1.1 TUBO DE VÉNTURI
Es una tubería corta recta, o garganta, entre dos tramos cónicos. La
presión varía en la proximidad de la sección estrecha; así, al colocar
un manómetro o instrumento registrador en la garganta se puede
medir la caída de presión y calcular el caudal instantáneo.
ECUACIONES DE UN TUBO DE VENTURI
El valor de C depende del número de Reynolds del flujo y de la
geometría real del medidor. La siguiente figura muestra una curva
típica de C Vs número de Reynolds en la tubería principal.
Placas de orificio:
Cuando una placa se coloca en forma concéntrica dentro de una
tubería, esta provoca que el flujo se contraiga de repente conforme
se aproxima al orificio y después se expande de repente al diámetro
total de la tubería. La corriente que fluye a través del orificio forma
una vena contracta y la rápida velocidad del flujo resulta en una
disminución de presión hacia abajo desde el orificio.
Algunos tipos de placas de orificio
1. La concéntrica: sirve para líquidos
2. La excéntrica: para los gases
3. La segmentada cuando los fluidos contienen un alto
porcentaje de gases disueltos.
ECUACIÓN DE UNA PLACA DE ORIFICIO
Orificio de orilla recta:
BOQUILLA O TOBERA DE FLUJO
Es una contracción gradual de la corriente de flujo
seguida de una sección cilíndrica recta y corta.
BOQUILLA
Para calcular el valor de C, tenemos la siguiente
expresión:
C = 0.9975 - 0.00653 (106 / NR)a
a= 0.5
a=0.2
A grandes valores de Reynolds (106) C es superior a 0.99.
Medidores de área variable

Los medidores de área variable pertenecen al grupo
de los llamados medidores diferenciales de presión.

Esta clase de medidores presenta una reducción de
la sección de paso del fluido, dando lugar a que el
fluido aumente su velocidad, lo que origina un
aumento de su energía cinética y, por consiguiente,
su presión tiende a disminuir en una proporción
equivalente, de acuerdo con el principio de la
conservación de la energía, creando una diferencia
de presión estática entre las secciones aguas arriba
y aguas abajo del medidor.
ESPECIFICACIONES
El Rotámetro: tiene un flotador
(indicador) que se mueve libremente
dentro de un tubo vertical ligeramente
cónico, con el extremo angosto hacia
abajo. El fluido entra por la parte inferior
del tubo y hace que el flotador suba
hasta que el área anular entre él y la
pared del tubo sea tal, que la caída de
presión de este estrechamiento sea lo
suficientemente para equilibrar el peso
del flotador. El tubo es de vidrio y lleva
grabado una escala lineal, sobre la cual
la posición del flotador indica el gasto o
caudal.
TIPOS Y MATERIALES DE LOS FLOTADORES
Tipos
de flotadores:
Cilíndrico con borde plano:
caudales mayores y mayor
gama de fluidos.

Cilíndrico con borde saliente
de cara inclinada a favor del
flujo, disminuyendo su
afectación por la viscosidad del
medio.

Cilíndrico con borde saliente
en contra del flujo: comparable
a una placa de orificio y con el
menor efecto de la viscosidad.

Material
Densidad (g/ml)
Aluminio
2.72
Bronce
8.78
Durimet
8.02
Monel
8.84
Níquel
8.91
Goma
1.20
Acero inoxidable 303
7.92
Acero inoxidable 316
8.04
Hastelloy B
9.24
Hastelloy C
8.94
Plomo
11.38
Tantalio
16.60
Teflón
2.20
Titanio
4.50
ECUACIONES DEL ROTAMETRO
 Q  A  v  Cd A
2Vc g (  c   f )
 f  Ac
Cd 
1
cw
El valor de Cd en función al # de Reynolds del flotador.
OTROS MEDIDORES DE AREA VARIABLE

FLUXOMETRO DE TURBINA
El fluido provoca que el rotor de la turbina gire a una velocidad que
depende de la velocidad del flujo. Conforme cada una de las aspas
de rotor pasa a través de una bobina magnética, se genera un pulso
de voltaje que puede alimentarse de un medidor de frecuencia, un
contador electrónico u otro dispositivo similar cuyas lecturas puedan
convertirse en velocidad de flujo. Velocidades de flujo desde 0.02
L/min hasta algunos miles de L/min se pueden medir con
fluxómetros de turbina de varios tamaños.

FLUXOMETRO DE VORTICE
Una obstrucción chata colocada en la corriente del flujo provoca la
creación de vortices a una frecuencia que es proporcional a la
velocidad del flujo. Un sensor en el fluxometro detecta los vortices y
genera una indicación en la lectura del dispositivo medidor.
La frecuencia de los vortices creados es directamente proporcional a la
velocidad del flujo y, por lo tanto, a la frecuencia del flujo del volumen.
Pueden utilizarse en una amplia variedad de fluidos incluyendo líquidos sucios
y limpios, así como gases y vapor.
FLUXOMETRO
ELECTROMAGNÉTICO

Basado en la Ley de Faraday. Formado por un
tubo, revestido interiormente con material
aislante. Sobre dos puntos diametralmente
opuestos de la superficie interna se colocan dos
electrodos metálicos, entre los cuales se genera
la señal eléctrica de medida. En la parte externa
se colocan los dispositivos para generar el
campo magnético, y todo se recubre de una
protección externa, con diversos grados de
seguridad.
FLUXOMETRO DE
ULTRASONIDO
Consta de unas Sondas, que trabajan por pares, como emisor y receptor.
Los hay dos tipos:
a) DOPPLER: Miden los cambios de frecuencia causados por el flujo del líquido.
Se colocan dos sensores cada uno a un lado del flujo a medir y se envía una
señal de frecuencia conocida a través del líquido.
b) TRÁNSITO: Tienen transductores colocados a ambos lados del flujo.
Las ondas de sonido viajan entre los dispositivos con una inclinación de 45º respecto
a la dirección de flujo del líquido.
SONDAS DE VELOCIDAD

TUBO PITOT.
Tubo hueco colocado de tal
forma que los extremos
abiertos apuntan
directamente a la corriente
del fluido. La presión en la
punta provoca que se
soporte una columna del
fluido.
El fluido dentro de la punta
es estacionario o estancado
llamado punto de
estancamiento.
v1 
v2 
2 g ( ps  p1 ) /  
2 g ( ys  y1) /  
ANEMOMETROS DE COPA
‘Es el instrumento clásico usado para medir el viento. Los valores de
medida empiezan con 0,1 m/s y 1 m/s, dependiendo del diseño’.
Tiene un eje vertical y tres copas o cazoletas que capturan el viento.
El n° de revoluciones por segundo son registradas
electrónicamente.
Normalmente está provisto de una veleta para detectar la dirección
del viento.
ANEMOMETRO DE ALAMBRE CALIENTE
mide la velocidad del fluido detectando los cambios en la transferencia
de calor mediante un pequeño sensor calentando eléctricamente
(un hilo o una película delgada) expuesto al fluido bajo estudio. El
sensor calentado es mantenido a una temperatura constante
usando un circuito de control electrónico. La magnitud del aumento
de voltaje necesario para mantener la temperatura constante está
directamente relacionada con la transferencia de calor y, por tanto,
con la velocidad del fluido. Es ideal para la medida de velocidades
en fluidos puros (gases, y líquidos) de temperatura uniforme.
MEDIDORES DE FLUJO MASICO
Es una necesidad el tener un control del nivel de masa o
cantidad de masa del fluido con el que estamos trabajando.
Los medidores de masa son usados para líquidos de densidad
variable, líquidos multifase o gases que requieren una
directa medición del nivel de masa.
En la actualidad sus aplicaciones han llegado a muchos
procesos como lo son, la producción del gas natural,
refinerías, químicas manufactureras, laboratorios científicos
PRINCIPIOS GENERALES
Existen dos clases principales de medidores de masa:
1.
El medidor de masa inferencial que mide por lo común el flujo
volumétrico del fluido y su densidad por separado.
2.
Medidor de masa “verdadero”, que registra directamente el flujo
en unidad de masa.
Algunos medidores de flujo masico son:
a)
b)
c)
d)
e)
El medidor de efecto Magnus.
El medidor de momento transversal para flujo axial
El medidor de gasto de masa de momento transversal para
flujo radial.
El medidor de gasto de masa de momento transversal.
El medidor térmico de gasto de masa giroscópico.
El tipo b constituye la base de varios medidores de gasto de masa
comerciales, una de cuyas versiones se describirá someramente a
continuación
MEDIDOR DE GASTO DE MASA DE MOMENTO
TRASNVERSAL PARA FLUJO AXIAL
También conocido como medidor de gasto de masa de
momento angular.
Una de las aplicaciones de este principio comprende el
uso del flujo axial que pasa por un propulsor activado y
una turbina puestos en serie. El propulsor le imparte una
cantidad de movimiento o momento angular al fluido
que, a su vez, genera un par de fuerza que se comunica a la
turbina a la que le impide girar por medio de un resorte.
El par, que se puede medir es proporcional a la velocidad
de rotación del propulsor y al gasto.
MEDIDORES DE GASTO DE MASA INFERENCIAL
1.
Medidores de carga con compensación de densidad.
Los medidores de carga, como orificios, tubos venturi o
boquillas se utilizan con uno de los diversos
densitómetros disponibles (por ejemplo basándose en una
fuerza ascensional en un flotador, acoplamiento hidráulico, salida
de voltaje de un cristal piezoeléctrico o absorción por radiación).
La señal proveniente del medidor de carga, es
proporcional a ρV² (donde: ρ = densidad del fluido y
V=velocidad del fluido), se multiplica por ρ según la
lectura del densitometro. La raíz cuadrada del producto
es proporcional al gasto de masa.
2.
Medidores de carga con compensación de velocidad.
La señal proveniente del medidor de carga, que es
proporcional a ρV², se divide entre la señal de un
velocímetro para obtener una señal proporcional al
gasto de masa.
3.
Medidores de velocidad con compensación de
densidad.
La señal generada por el velocímetro (por ejemplo,
medidor de turbina electromagnético o de velocidad sonica) se
multiplica por la señal obtenida en el densitómetro
para dar una señal proporcional al gasto de masa.
APARATOS PARA MEDICIONES DE
CAUDAL MÁSICO

Medidores térmicos
Un método de determinación del flujo
de masa es por el efecto de
transferencia de calor. Se pone en
contacto con el fluido una resistencia
de platino con una corriente
controlada. Esta resistencia sube su
temperatura en condiciones sin flujo.
Cuando el flujo se inicia, existe una
disminución de temperatura en el
sensor por el intercambio de calor con
el fluido. La corriente eléctrica varía
por la propia variación de la
resistencia con la temperatura y esta
variación es proporcional a la nueva

Caudalímetro de Coriolis
Con la configuración del equipo indicado, poniendo a los
tubos en oscilación a una frecuencia fija uno contra otro;
el movimiento entre los tubos en U será estable. Con el
ingreso del fluido al sistema, este circulará en el primer
brazo de la U alejándose del eje de rotación, mientras que
en el segundo brazo de la U estará acercándose al eje de
rotación. Esto generará una fuerza de Coriolis que
distorsionará la oscilación fija en vacío. Esta distorsión
será entonces una función de la masa y de la velocidad de
flujo. La velocidad angular está fijada por la frecuencia
de excitación.
VENTAJAS DEL CAUDALÍMETRO
• Bajo nivel de incertidumbre en la medición de masa
• La medición es altamente independiente de la
temperatura, densidad o presión del fluido, sólo
depende de la masa
• Principalmente aplicable para líquidos, en un amplio
rango, independientemente de la viscosidad
• Baja caída de presión en el flujo.
• Capaz de medir caudal másico en ambas direcciones.
• Costo bastante alto
• Es importante la limpieza de los tubos oscilantes en
forma periódica.
• Es mayor en tamaño que otros caudalímetros
Medidores de masa digitales

Anemómetro de cucharas PCE-A420

Anemómetro PCE-AM81

Caudalímetro másico Coriolis Promass 83
 Anemometros de rueda alada serie LCA
(la rueda alada está integrada en el medidor)

Anemómetros de tubo de Pitot-PVM-100
(tubo de Pitot, para altas velocidades de circulación)
APLICACIONES DE ALGUNOS MEDIDORES DE FLUJO
COMPARATIVA DE LOS DISTINTOS SENSORES DE FLUJO
Sensor de flujo
Líquidos recomendados
Pérdida de
presión
Exactitud típica
en %
Medidas y
diámetros
Efecto
viscoso
Coste Relativo
Orificio
Líquidos sucios y limpios;
algunos líquidos viscosos
Medio
±2 a ±4 of full
scale
10 a 30
Alto
Bajo
Tubo Venturi
Líquidos viscosos, sucios
y limpios
Bajo
±1
5 a 20
Alto
Medio
Tubo Pitot
Líquidos limpios
Muy bajo
±3 a ±5
20 a 30
Bajo
Bajo
Turbina
Líquidos limpios y
viscosos
Alto
±0.25
5 a 10
Alto
Alto
Electromagnet.
Líquidos sucios y limpios;
líquidos viscosos y
conductores
No
±0.5
5
No
Alto
Ultrasonic. (Doppler)
Líquidos sucios y líquidos
viscosos
No
±5
5 a 30
No
Alto
Ultrasonic. (Time-oftravel)
Líquidos limpios y líquidos
viscosos
No
±1 a ±5
5 a 30
No
Alto
CONCLUSIONES

Tener en cuenta que los Medidores de
Flujos son dispositivos, que pueden ser
utilizado
en
muchas
aplicaciones
tecnológicas, requieren de un buen uso y
mantenimiento

Los medidores de flujo nos ayudan a
controlar y mantener especificaciones de
operación en un proceso
Descargar

Medidores de flujo - MSc. Alba Veranay Díaz