EJERCICIOS DE
CURVAS CONICAS
Construcciones Elementales
Ejercicio Nº 1
Elementos de la elipse
1.- La circunferencia principal Cp de la elipse es la que tiene por centro el de la elipse
y radio a. Se define como el lugar geométrico de los pies de las perpendiculares
trazadas por los focos a cada una de las tangentes.
Es decir si desde el foco F y F’ trazamos perpendiculares a la Cp se dibujan las tangentes
a la elipse.
Las circunferencias focales Cf y Cf' de la elipse tienen por centro uno de los focos y
radio 2ª
El punto T es simétrico del foco F respecto a la tangente t’, si unimos T con F'
determinamos el punto M punto de tangente de la elipse y la recta t'
Ejercicio Nº 2
Trazar una elipse dados los ejes AB y CD por haces proyectivos
C
B
A
D
1.- Se construye un rectángulo tal como se ve en la figura de lados los ejes dados, se divide
el semieje OA en un numero de partes iguales a continuación dividimos también la mitad
el lado menor AE en el mismo numero de partes.
C
E
4
3
2
1
B
A
1
2
3
4
O
D
2.- Se une el extremo D del eje menor con las divisiones del semieje mayor 1,2,3,4. Unimos
el otro extremo del eje menor C con las divisiones del lado AE 1,2,3,4.Donde se cortan las
rectas anteriores con las otras son puntos de la elipse.
C
E
4
3
2
1
B
A
1
2
3
4
O
D
3.- Se repite el procedimiento y determinamos los otros puntos de la elipse buscada.
C
E
4
3
2
1
B
A
1
2
3
4
O
D
Ejercicio Nº 3
Construcción de una elipse por envolventes
Dados los ejes y los focos
Trazamos los ejes y determinamos los focos F y F’.
1.- La construcción se fundamenta en que la circunferencia principal de diámetro 2a y centro
O es el lugar geométrico de los pies de las perpendiculares trazadas por cada foco a las
tangentes. Es decir las envolventes son las tangentes a la elipse.
2.- Tomamos un punto cualquiera E de la circunferencia principal se une con F' y se traza la
perpendicular t por L a LF', la recta t es tangente a la elipse.
3.- Se repite una serie de veces en cada cuadrante y trazamos la elipse como se ve en la
figura.
E
t
C
O
A
F'
F
D
B
Ejercicio Nº 4
Trazado de la elipse por puntos mediante la circunferencia principal y la de
diámetro 2b.
Dados los ejes
C
A
B
O
D
1.- Se trazan las circunferencias de diámetro 2a y 2b respectivamente.
2.- Se traza un radio cualquiera que corta en T' y T'' a las circunferencias anteriores.
3.- Se traza por T' una paralela al eje CD y por T'' la paralela a AB ambas se cortan en T que
es un punto de la elipse.
4.- Se repite la operación el numero de veces que se considere necesario y se determinar
tantos puntos como de precise
Ejercicio Nº 5
Construcción de una elipse dados una pareja de diámetros conjugados
Dados una pareja de diámetros conjugados A’-B’ y C’-D’
1.- Trazamos la circunferencia de diámetro A‘ B'.
2.- La perpendicular por O corta a la circunferencia en D1 y C1 .
3.- Unimos los puntos D1 y D’ así como C1 y C’.
4.- Los puntos de la elipse se determinan trazando triángulos semejantes al OD1D' como el RSP, cuyos
lados son paralelos a los del triángulo OD1D'
Es decir trazamos por un punto cualquiera R una paralela al diámetro C1 D1 que corta en S a la Cp, por
S la paralela D1-D’ y por R trazamos la paralela a C’D’ que corta a la anterior en el punto P que es un
punto de la elipse buscada.
5.- Se repite el procedimiento anterior las veces que se consideren necesarias y a
continuación se traza la elipse
Ejercicio Nº 6
Puntos de intersección de una recta con una elipse
Sea la elipse dada por sus elementos, focos, ejes y la recta r.
r
C
B
A
F
O'
D
F'
1.- Sabiendo que la elipse es el lugar geométrico de los centros de las circunferencias que
son tangentes a la focal y pasan por el otro foco, lo que tenemos que determinar son los
centros de estas circunferencias. Trazamos la circunferencia focal de centro F y radio 2a.
2.-Hallamos el simétrico de F' respecto a la recta r punto F'1 .
3.- Trazamos una circunferencia auxiliar cualquiera de centro O en la recta r que pase por F
y F'1 , que corta a la focal en 1 y 2, la cuerda 1-2 y la recta F'-F'1 se cortan en el centro
radical Cr.
4.- Desde Cr trazamos las tangentes a la focal, que nos dan los puntos de tangencia T1 y T2 .
5.- Unimos los puntos de tangencia T1 y T2 con F dando los puntos I1 e I2, que son los puntos
de intersección de la recta con la elipse, a la vez son los centros de las circunferencias
tangentes a la focal de F y que pasan por el otro foco F'
Ejercicio Nº 7
Hallar los ejes una elipse dada por una pareja de diámetros conjugados A'B' y
C'D‘.
1.- Por el centro O se traza la perpendicular a A‘ B' y se lleva OP=OA‘.
2.-Se une P con D' y se traza la circunferencia de centro O1 y diámetro PD', con
centro en O1 y radio O1O se traza la semicircunferencia MON.
Uniendo O con M y N se obtienen los ejes de la elipse buscada.
3.- Uniendo O con M y N se obtienen los ejes de la elipse buscada.
4.- Los puntos de corte de la circunferencia de centro O1 y la recta O1O nos determinan los
puntos G y H
5.- La magnitud de los ejes de la elipse es a = OH y b = OG que transportamos sobre cada
uno de ellos respectivamente
Ejercicio Nº 8
Tangentes desde un punto P a una elipse utilizando la circunferencia principal
1.- Trazamos la circunferencia principal Cp de centro en O y radio OB = OA
2.- Unimos el punto P con el Foco F’ y con centro en 1 punto medio de PF‘, trazamos la
circunferencia de diámetro PF'
3.- Los puntos de corte con la Cp puntos M y N son los puntos por los que pasan las
tangentes unimos estos con P y tenemos las tangentes t y t' a la elipse
4.- Determinamos los simétricos F' respecto a las tangentes puntos F1' y F2'. Unimos estos
puntos con el otro foco F y determinamos los puntos de tangencia con la elipse T y T'
Ejercicio Nº 9
Tangente a la elipse paralelas a una dirección dada d utilizando la circunferencia
principal
1.- Trazamos la circunferencia principal Cp
2.- Trazamos por el foco F una perpendicular a la dirección d
3.- Por los puntos M y N de intersección con la Cp son los puntos por los que pasan las
tangentes por estos puntos trazamos las paralelas a la dirección dada d.
4.- Hallamos los simétricos del foco F respecto de las tangentes t y t' puntos F1 y F2 .
5.- Unimos los puntos F1 y F2 con F' y determinamos los punto de corte con las tangentes
puntos T y T' que son los puntos de tangencia con la elipse.
Ejercicio Nº 10
Construcción de la hipérbola por haces proyectivos.
Datos el eje mayor A–B y los focos F y F’
1.- Se determina un punto cualquiera P de la curva, por el método de los puntos.
2.- Se traza un rectángulo BMPN.
3.- Se dividen en partes iguales los segmentos MP y NP y se unen el punto B del eje mayor
dado con las divisiones de MP y el punto A con las divisiones de NP de la forma que vemos,
los puntos de intersección son puntos de la hipérbola.
4.- Por la parte inferior se puede repetir el mismo procedimiento ó se llevan sobre la
prolongación de MP los simétricos de 1, 2, 3, 4, puntos 1’, 2’, 3’, 4’, y se unen con el punto B
de la forma que como se ve en la Fig..
5.- Se unen los puntos anteriores y tenemos la hipérbola buscada
Ejercicio Nº 11
Determinar los puntos de intersección de una recta con una hipérbola
Conocemos el eje AB y los focos de la hipérbola y la recta r que queremos conocer los
puntos de intersección con la hipérbola
1.- Trazamos la circunferencia focal de centro F,
2.- Hallamos el simétrico de F' respecto de la recta r punto F‘1.-
3.- Trazamos la circunferencia auxiliar de centro E que pase por F y F'1 de radio
cualquiera.
4.- Unimos los puntos de corte de la circunferencia anterior con la focal puntos 1 y
2 y determinamos el Cr que es el punto de corte con la recta F' F'1
5.- Desde Cr trazamos las tangentes a la circunferencia focal y hallamos los puntos T y T',
6.- Unimos los puntos T y T’ con el foco F y determinamos los puntos I1 y I2 puntos
de intersección de la recta con la hipérbola
Ejercicio Nº 12
Trazar una hipérbola por envolventes
Tenemos una hipérbola definida por los vértices A y B y los focos F y F‘.
1.- Se traza la Cp de centro O y radio a = OA = OB.
3.- Se trazan las asíntotas, por A levantamos una perpendicular al eje AB, trazamos un arco
de centro O y radio OF que corta a la perpendicular anterior en el punto M por el que pasa la
asíntota t', la otra asíntota t es simétrica AM = AN
4.- Unimos M y N con O y tenemos las asíntotas t‘ y t
5.- Tomamos un punto cualquiera 1 de la Cp que unimos con el foco F’ y trazamos la
perpendicular a 1F’ por 1, esta recta es la tangente a la hipérbola.
6.- Tomamos otra serie de puntos cualesquiera como se representa en la Fig. y repetimos el
procedimiento anterior y tenemos las tangentes a la hipérbola, dibujando la hipérbola a continuación
Ejercicio Nº 13
Trazar una hipérbola conocidas las asíntotas y un punto P de ella
1º.- Por el punto P trazamos una recta que corta a las asíntotas en A y D
2º.- Tomamos la distancia PA y trazamos el punto C, PA = CD.
3º.- Repetimos la misma operación con otra recta que corta a las asíntotas en M y N, y
determinamos el punto R igual que el C; NP = MR
4º.- Se determinan todos los otros puntos restantes de la misma forma
trazando rectas que pasen por el punto P o por los otros puntos hallados C, C’, R y R’
5º.- Se traza la hipérbola
Ejercicio Nº 14
Tangentes a la hipérbola desde un punto exterior P, mediante la circunferencia principal Cp.
Se conocen el eje AB y los focos F y F' de la hipérbola, y un punto cualquiera P exterior a
ella.
1º.- Trazamos la circunferencia principal Cp
2º.- Unimos el punto P con el foco F y trazamos una circunferencia de diámetro PF y centro
O1 (punto medio de PF) que corta a la Cp en los puntos M y N.
3º.- Por los puntos M y N pasan las tangentes a la hipérbola unimos M y N con P y tenemos
las tangentes t y t‘
4º.- Hallamos los simétricos de F respecto a las tangentes t y t' puntos F1 y F2 que
unidos con el otro foco F' nos determinan los puntos de tangencia T y T'
Ejercicio Nº 15
Tangentes a la hipérbola paralelas a una dirección dada, mediante la circunferencia principal
Cp.
Conocemos el eje AB y los focos de la hipérbola y la recta d que nos da la dirección que
queremos trazar las tangentes.
1º.- Trazamos la circunferencia principal Cp de centro O y radio OA = OB
2º.- Por F' trazamos la perpendicular a la dirección dada d que nos determina los
puntos M y N, puntos por los que pasan las tangentes a la hipérbola paralelas a la
dirección dada d, foco F que nos da los punto de tangencia T y T' con la hipérbola.
3º.- Trazamos estas tangentes t y t', por M y N y paralelas a la dirección dada d
4º.- Hallamos los simétricos de F' respecto a las tangentes t y t' puntos F'1 y F'2.
5º.- Unimos F'1 y F'2 con el otro foco F que nos da los punto de tangencia T y T'
con la hipérbola.
Ejercicio Nº 16
Trazar una parábola por envolventes
Tenemos una parábola definida por el eje, el vértice V y el foco F.
1º.- Se traza la directriz d sabiendo que FV = AV y que la directriz es la
circunferencia focal de la parábola Cf.
2º.- Se traza la tangente tv en el vértice V, que sabemos que es perpendicular al
eje y es así mismo la circunferencia principal Cp.
3º.- Situamos un punto T en la tangente ,unimos este punto con el foco F y
trazamos una perpendicular por T.
4º.- Repetimos la operación con otros puntos, y la parábola es la tangente a las
perpendiculares.
Ejercicio Nº 17
Trazar una parábola dados el eje, el vértice y un punto de la curva
1º.- Trazamos la tangente en el vértice VN y la paralela PN al eje.
2º.- Se divide PN y VN en un numero de partes iguales.
3º.- Por la división 6 de VN se traza paralela al eje y por la división 6 de NP se unen con V. El
punto de corte de ambas punto R resulta un punto de la parábola.
4º.- Repetimos el mismo procedimiento por la otras divisiones y se obtienen los
demás puntos
5º.- La otra rama se determina de la misma forma, por ser la parábola simétrica respecto al
eje.
6º.- Trazamos la parábola por los puntos obtenidos.
Ejercicio Nº 18
Intersección de una recta con una parábola.
Se conocen el eje y el foco F y la directriz de la parábola, y la recta r.
1º.- Hallamos el vértice de la parábola V y trazamos la tangente en el vértice tv que así mismo
la circunferencia principal Cp.
2º.- Hallamos el simétrico de F respecto de la recta r punto F'.
3º.- Trazamos una circunferencia cualquiera que pase por F y F' de centro en el punto O.
4º.- Prolongamos la recta FF' que corta a la directriz en el punto Cr, centro radical y trazamos
la tangente Cr-T
5º.- Este segmento se lleva sobre la directriz con una circunferencia de centro Cr y radio Cr-T
que nos determina los puntos A y B.
6º.- Por A y B se trazan las perpendiculares a la directriz que cortan a la recta r en
los punto I y I' que son los puntos de intersección de la recta r con la parábola.
Ejercicio Nº 19
Determinación de una parábola conociendo dos tangentes y los puntos de
tangencias en cada una .
Conocemos las tangentes t y t' y los puntos de tangencia T y T‘.
1º.- Unimos los puntos de tangencia y tenemos la recta T-T', hallamos el punto medio M de
este segmento TT', unimos M y N y tenemos la dirección del eje que es la recta MN.
2º.- Tomamos un punto cualquiera P y por el trazamos las paralelas a las tangentes que
cortan a estas en los puntos 1 y 2 se unen estos y determinamos la tangente t'' que es otra
tangente a la parábola, determinamos el punto de tangencia trazando por P una paralela al
eje que nos determina el punto T'‘.
3º.- Si tomamos el punto M punto del eje de la parábola y por el trazamos las paralelas a las tangentes
que cortan a estas en los puntos 3 y 4 se unen estos y determinamos el vértice V de la parábola
Para determinar mas puntos se repite el procedimiento tomando puntos diferentes sobre la recta TT'.
Ejercicio Nº 20
Tangentes a la parábola desde un punto exterior P utilizando la tangente en el vértice
Tenemos una parábola definida por el eje, vértice A el foco F '.
1º.- Se traza la directriz d por B, FA = AB que como sabemos es perpendicular al eje (que es
la circunferencia focal Cf de la parábola) a continuación por A trazamos la tangente en el
vértice tv que es la circunferencia principal Cp.
2º.- Unimos P con el foco F y trazamos una circunferencia de diámetro PF y centro O,
que corta a la tangente en el vértice tv en los puntos M y M' puntos que pertenecen a
las tangentes
3º.- Unimos P con M y M' puntos que pertenecen a las tangentes y tenemos las
tangentes t y t' desde el punto P a la parábola.
4º.- Unimos el foco F con los puntos M y M' y tenemos los punto F1 y F2 puntos de
la directriz por los puntos F1 y F2 trazamos paralelas al eje y nos determina los
puntos de tangencia con la parábola T y T'.
Ejercicio Nº 21
Tangentes a la parábola paralelas a una dirección dada r utilizando la tangente en el vértice
Datos el eje, el foco F y el vértice A
1º.- Trazamos la directriz d y la tangente en el vértice tv, teniendo presente que
AB = AF
2º.- Por el foco trazamos la perpendicular a la dirección dada r que corta a la tangente en el
vértice tv en el punto M y a la directriz en el punto F‘.
3º.- El punto M es un punto de la tangente buscada por M trazamos una paralela
a la dirección dada r y tenemos la tangente buscada.
4º.- Por el punto F' punto de corte de la perpendicular con la directriz trazamos otra
paralela al eje que nos el punto T punto de tangencia con la parábola.
Ejercicio Nº 22
Construcción de la elipse por el método de los 12 puntos.
Se conocen los ejes.
Vemos el dibujo de la circunferencia, el punto M es la mitad del radio de la circunferencia (cuarta parte
del lado AB)
Si unimos E con B y el otro extremo del diámetro con M las rectas se cortan en un punto de la
circunferencia
1º.- Se traza el rectángulo de lados igual a los ejes.
2º.- Se dividen los lados en cuatro partes iguales el lado AB el punto M es la cuarta parte y el
lado BC el punto N es también la cuarta parte, se procede igual en las otras mitades de los
lados.
3º.- Se une M con el extremo del eje mayor punto 3 y el otro extremo E con el punto B y nos
da el punto P punto de la elipse. se repite la operación y tenemos cuatro puntos.
4º.- Se repite la operación anterior con los otros cuadrantes y tenemos cuatro puntos.
4º.- Se une N con el extremo del eje menor punto 6 y el otro extremo punto 12 con
el punto C y nos da el punto 4, punto de la elipse.
5º.- Se repite la operación anterior con los otros cuadrantes y tenemos cuatro
puntos.
6º.- Con los otros cuatro puntos extremos de los ejes tenemos los doce puntos que
unimos y tenemos dibujada la elipse.
Ejercicio Nº 23
Construcción de una parábola por tangentes
Conocemos el eje de la parábola, la tangente en el punto P a la parábola (PV).
1º.- Determinamos el simétrico de P respecto al eje punto P' y trazamos la tangente P'V.
2º.- Se dividen PV y P'V en el mismo numero cualquiera de partes. Se numeran las dos
tangentes correlativamente pero en orden inverso.
3º.- Se trazan las rectas 1-1, 2-2, 3-3,.....9-9, que son las tangentes a la parábola y trazamos
la misma.
Ejercicio Nº 24: Determinar los ejes de una elipse si se conocen los focos F y
F' y un P. Dibujar la elipse y la tangente en P.
1º.- Trazamos la mediatriz de F-F’ y se obtiene el eje menor.
2º.-Unimos P con F y con F’, obteniendo los radio vectores r y r’. Llevamos sobre una recta
auxiliar cualquiera los radio vectores FP= r y PF’=r’ uno a continuación de otro y obtenemos
el valor del eje mayor =2a.
3º.- Con centro en O y radio a trazamos un arco que corta al eje mayor en los puntos A y B
que son los extremos del eje mayor.
4º.- Con centro en F’ o en F trazamos un arco de circunferencia de radio a que corta al eje
menor en los puntos C y D que resultan los extremos del eje menor.
5º.- Tomamos un punto 1 cualquiera del eje mayor, trazamos con centro en F y F’ dos arcos
de radio 1-A y con centro también en F y F’ trazamos otros dos arco de radio 1-B que corta a
los anteriores, los puntos de corte son punto de la elipse.
6º.- Tomamos otros puntos 2, 3,.. cualesquiera del eje mayor, y repetimos el procedimiento
por encima del eje mayor y por debajo, trazamos con centro en F y F’ arcos de radio 2-A, 3A,.. y con centro también en F y F’ trazamos otros arco de radio 2-B, 3-B, que corta a los
anteriores, los puntos de corte son punto de la elipse.
7º.- Unimos los puntos y obtenemos la elipse.
8º.- Trazamos la bisectriz de los radios vectores y obtenemos la tangente en el punto P de la
elipse.
Ejercicio Nº 26: Hallar el centro, el otro foco y la longitud del eje menor 2b de
una elipse de la que se conocen un punto P, un foco F y la dirección del eje
mayor así como el valor del semieje mayor a=35 mm.
1º.- Llevamos sobre una recta auxiliar cualquiera el valor de 2a = 35+35=70 mm. Sobre la
recta llevamos el valor del radio vector PF= r = 27 mm y el valor PF’=r’ = 70 -27 =43 mm.
2º.- Con centro en el punto P y radio PF’ =43 mm trazamos un arco que corta al eje mayor en
el punto F’ que resulta el otro foco.
3º.- Con centro en los focos F y F’ trazamos la mediatriz que resulta el eje menor de la elipse.
4º.- Con centro en el foco F por ejemplo y radio a=35 mm trazamos un arco que corta al eje
menor en los puntos C y D que resultan ser los extremos del otro eje.
5º.- Con centro en el punto O y radio a=35 mm trazamos un arco que corta al eje mayor en
los puntos A y D que resultan ser los extremos del eje.
Ejercicio Nº 27:Determinar los elementos de una elipse de la que se conocen
un foco F, dos tangentes t1y t2 con un punto de tangencia T en una de ellas.
1º.- Hallamos los punto M y N simétricos del foco F respecto a las tangentes t1 y t2.
2º.- Trazamos la mediatriz del segmento M y N.
3º.- Unimos el punto M con el punto de tangencia T que corta a la mediatriz de M y N en el
punto F’ que resulta ser el otro foco.
4º.- Unimos los focos F y F’ y tenemos el eje mayor. Sobre una recta auxiliar llevamos los
radio vectores FT y F’T cuya suma nos determina el valor del eje mayor 2a = 74 mm que
implica que el valor de a =37 mm.
5º.- Con centro en los focos F y F’ y radio a=37 mm trazamos la mediatriz que nos determina
los punto C y D que resulta los extremos del eje menor.
6º.- Con centro en el punto O y radio a=37 mm llevamos las distancias OA = OB = 37 mm
que nos determinan los extremos el eje mayor.
Ejercicio Nº 28: Trazar las tangentes a una elipse desde un punto exterior P a
ella. Definida por su eje mayor y los focos.
1º.- Con centro en el punto F y radio 2a=AB trazamos la circunferencia focal.
2º.- Con centro en el punto P y radio PF’ trazamos la circunferencia que corta a la focal en los
punto M y N.
3º.- Unimos el foco F’ con los puntos M y N.
4º.- Por el punto P trazamos las perpendiculares t y t1 a los segmentos MF’ y NF’, que
también son las mediatrices de MF’ y NF’.
5º.- Unimos M con F y obtenemos el punto T punto de tangencia de la tangente t con la elipse
si unimos N con F obtenemos el punto T1 que es el otro punto de tangencia de la tangente t1
con la elipse.
Ejercicio Nº 29: Determinar la hipérbola por puntos y sus asíntotas si
conocemos sus vértices y focos.
1º.- Trazamos la mediatriz de A-B o de F-F’ y obtenemos el eje imaginario y el punto O.
2º.- Trazamos la circunferencia de centro O y diámetro A-B.
3º.- Trazamos la circunferencia de centro O1 (punto medio de O-F’) y diámetro O-F’.
4º.- Unimos los puntos de intersección de las circunferencias con el punto O y tenemos las
asíntotas.
5º.- Situamos un punto cualquiera 1 y con centro en los focos trazamos un arco de circunferencia
de radio 1-B, con centro otra vez en los focos trazamos otros cuatro arcos de circunferencia de
radio 1-A y tenemos cuatro puntos.
6º.- Tomamos otros puntos cualesquiera 2, 3, .. y repetimos el procedimiento y obtenemos
otros puntos que unidos resulta la hipérbola.
Ejercicio Nº 30: Trazar las tangentes a una hipérbola desde un punto exterior
a ella P si conocemos los focos y una asíntota.
1º.- Con centro en el punto O trazamos una circunferencia que pase por los focos y corta a la
asíntota por los puntos de corte trazamos una perpendicular al eje y obtenemos los extremos
A y B del eje.
2º.- Trazamos la circunferencia focal de centro F y radio 2a.
3º.- Trazamos la circunferencia de centro el punto P y que pasa por el otro foco F’.
4º.- Unimos los puntos M y N con el foco F’.
5º.- Por P trazamos perpendiculares a las rectas M-F’ y N-F’ que son las tangentes t y t1.
(Las tangentes son también las mediatrices de M-F’ y N-F’ ).
6º.- Unimos M-F y obtenemos el punto T punto de tangencia de la tangente t con la hipérbola. Si
unimos N con F’ obtenemos el punto T1 punto de tangente de t1 con la hipérbola.
Ejercicio Nº 31:Trazar las tangentes y los puntos de tangencia a la hipérbola
dada por sus vértices y sus focos paralelas a la dirección dada d.
1º.- Trazamos la circunferencia focal de centro F y radio A-B.
2º.- Por F’ trazamos la perpendicular a la dirección d, que corta a la circunferencial focal en M
y N.
3º.- Trazamos la mediatriz de M-F’ y obtenemos la recta t, trazamos la mediatriz de N- F’ y
obtenemos la recta t1 que son las tangentes a la hipérbola.
6º.- Unimos M-F y obtenemos el punto T punto de tangencia de la tangente t con la
hipérbola. Si unimos N con F’ obtenemos el punto T1 punto de tangente de t1 con la
hipérbola.
Ejercicio Nº 32: Determinar la directriz y el vértice así como la tangente en el punto
P. De una parábola que se conoce su foco F, un punto A del eje y un punto P de la
parábola.
1º.- Unimos A-F y obtenemos el eje de la parábola.
2º.- Con centro en P y radio PF trazamos un arco de circunferencia. Trazamos la tangente al
arco de la circunferencia perpendicular al eje que resulta la directriz de la parábola.
3º.- Hallamos el vértice V de la parábola que es la mitad de la distancia del foco a la directriz.
Unimos el punto de tangente T con el punto P (que es paralela al eje).
4º.- Trazamos la bisectriz del ángulo FPT y obtenemos la tangente en el punto P.
Ejercicio Nº 33: Hallar la parábola por puntos, conociendo el eje la directriz y la
distancia desde el vértice a la directriz.
1º.- Con centro en V, trazamos una circunferencia que pase por la intersección del eje y la
directriz punto A, el punto de corte con el eje es el foco F.
2º.- Por un punto cualquiera 1 trazamos una paralela a la directriz y con centro en F, y radio
1-A trazamos un arco de circunferencia que corta a la perpendicular en dos puntos B y C
que son puntos de la parábola por equidistar del foco y de la directriz.
3º.- Tomamos otros puntos 2, 3,.. cualesquiera del eje, y repetimos el procedimiento,
trazamos con centro en F arcos de radio 2-A, 3-A,.. que corta a las paralelas en puntos de la
parábola.
4º.- Unimos los puntos y obtenemos la parábola.
Ejercicio Nº 34: Determinar el eje, el vértice y la directriz de una parábola que
se conocen el foco y un par de puntos A y B de la misma.
1º.- Con centro en el punto A trazamos un arco de circunferencia que pase por el foco F.
2º.- Con centro en el punto B trazamos una circunferencia que pase por el foco F.
3º.- Trazamos la tangente a las circunferencias una de ellas. Esta tangente es la directriz.
4º.- Por el foco F trazamos la perpendicular a la directriz que resulta el eje de la parábola.
5º.- Trazamos la mediatriz de la distancia del foco a la directriz F-1 y obtenemos el vértice V
de la parábola.
Ejercicio Nº 35: Trazar la parábola que pasa por los puntos A y B situado
ambos a un mismo lado del eje, si se conoce la directriz. Trazar las tangentes
desde el punto de intersección del eje y la directriz.
1º.- Por los puntos A y B trazamos la perpendiculares a la directriz y hallamos los puntos de
tangencia C y D.
2º.- Con centro en A y B trazamos circunferencias que pasan por los puntos de tangencia C y
D. El punto de intersección de ambas resulta el foco F de la parábola.
3º.- Por el foco F trazamos una perpendicular a la directriz que resulta ser el eje de la
parábola.
4º.- Hallamos el vértice V de la parábola que resulta ser el punto medio de F-P.
5º.- Con centro en P y radio P-F trazamos una circunferencia que corta en M y N a la
directriz.
6º.- Unimos M y N con el foco F.
7º.- Por el punto P trazamos una perpendicular a M-F y otra a N-F, que resultan ser las
tangentes t y t1. Que también pasan por el punto 1 y 2.
8º.- Por los puntos M y N trazamos perpendiculares a la directriz (paralelas al eje) que nos
determina los puntos T y T1 puntos de tangencia con la parábola.
Ejercicio Nº 36: Trazar las tangentes a una parábola desde un punto exterior
P si conocemos el foco F, el eje e y la directriz d.
1º.- Hallamos la tangente en el vértice sabiendo que el punto V es la mitad de la distancia del
foco a la directriz.
2º.- Con centro en el punto P y radio PF trazamos un arco de circunferencia que corta en M y
N a la directriz.
3º.- Unimos M y N con el foco F.
4º.- Por el punto P trazamos las rectas t y t1 perpendiculares a M-F y a N-F, que también son
las mediatrices y pasan por el punto de corte de las rectas M-F y N-F con la tangente en el
vértice. La rectas t y t1 son las tangentes a la parábola.
5º.- Por los puntos M y N trazamos las rectas perpendiculares a la directriz que cortan a las
tangentes t y t1 en los punto T y T1 que son los puntos de tangencia con la parábola.
Descargar

Ejercicios de curvas cónicas