OPTIMIZACION INTELIGENTE DE REDES
DE TRANSPORTE DE GAS NATURAL
RESULTADOS DEL MODELO MATEMATICO POR
MEDIO DEL OPTIMIZADOR CONOPT2
Beatriz Adriana Esparza Ramírez
Pasante de Ingeniería Industrial de la Universidad de Guadalajara
1
2
3
NODO FUENTE
NODO DE PASO
ESTACION COMPRESORA
NODO DEMANDA
ARCO-DUCTO
4
5
6
MODELO MATEMATICO
VARIABLES DE DECISION
pi = 627.41 Lbf/ft2
1
pi = 705.33 Lbf/ft2
2
X ij = 19 916.64 Lbm/min
3
pi = 695.03 Lbf/ft2
4
pi = 615.81
X (i,j) Flujo de masa en cada arco de la red
A rc o s
F lu jo
n 1 -n 2
1 9 9 1 6 .6 4 L b m / m in
n 2 -n 3
1 9 9 1 6 .6 4 L b m / m in
n 3 -n 4
1 9 9 1 6 .6 4 L b m / m in
n 4 -n 5
1 9 9 1 6 .6 4 L b m / m in
n 5 -n 6
1 9 9 1 6 .6 4 L b m / m in
p (i) Presion en cada nodo de la red
N odos
P r e s io n
n1
7 0 5 .3 3 L b f/ ft 2
n2
6 2 7 .4 1 L b f/ ft 2
n3
6 9 5 .0 3 L b f/ ft 2
n4
6 1 5 .8 1 L b f/ ft 2
n5
6 8 1 .0 6 L b f/ ft 2
n6
6 0 0 .0 0 L b f/ ft 2
pi = 681.06 Lbf/ft2
5
6
pi = 600 Lbf/ft2
FUNCION OBJETIVO
Minimizar la suma de los costos de combustible en todas las
estaciones compresoras que se encuentran en la red
Min  g(i,j) (xij, pi , pj )
(i,j)Ac

A rco s
C o m p reso res
C o sto d e C o m b u stib le
n 2 -n 3
1 0 2 2 0 8 0 .8 3 L b f*ft/ m in
n 4 -n 5
1 0 1 2 7 6 9 .0 5 L b f*ft/ m in
Y = 2 034 849.88 Lbf*ft/min
1
2
3
4
5
6
RESTRICCIONES
1

2
4
5
=
bi i es nodo fuente
- bi i es nodo demanda
0 i es nodo de paso
Capacidad del flujo de gas en cada ducto
x i j < cf i j 19 916.64 Lbm/min = 19 916.64 Lbm/min

Flujo de gas en cada ducto
p i 2 – p j 2 = c i j * x2 i j

Limites de presion en cada nodo
piL<pi<piU

6
Balance de flujo en cada nodo
 x ij -  x ij
j
j
{ j (i,j)  A }

3
600 < p i < 800
Limites de operacion en cada compresor
(x i j, p i, p j )  D(i,j)
x.up i j =cf
VARIABLES EN CADA ESTACION
1

2
3
4
S (i,j) Velocidad del Flujo en cada estacion
A rco s
C o m p reso res

5 0 0 0 rp m
n 4 -n 5
5 0 0 0 rp m
Q (i,j) Flujo Volumetrico en cada estacion
F l u jo v o l u m e t r i c o
n 2 -n 3
9 2 7 2 .4 0 f t 3 / m i n
n 4 -n 5
9 4 4 7 .0 3 f t 3 / m i n
H (i,j) Cabeza adiabatica en cada estacion
A rco s
C o m p reso res

V e lo c id a d
n 2 -n 3
A rco s
C o m p reso res

5
C a b e z a A d ia b a tic a
n 2 -n 3
9 2 7 2 .4 0
n 4 -n 5
9 4 4 7 .0 3
 (i,j) Eficiencia en cada estacion
A rco s
C o m p reso res
E f ic ie n c ia
n 2 -n 3
8 4 .8 6 %
n 4 -n 5
8 4 .2 5 %
6
Comprobacion de que los puntos
pertenecen al Dominio del compresor

Smin < S < Smax

H = ZRTs/m [ ( p j / p i )m – 1 ]

Q = ZRTs x i j / p i

H/S2 = AH + BH (Q/S) + CH (Q/S) 2 + DH (Q/S) 3

 = AE + BE (Q/S) + CE (Q/S) 2 + DE (Q/S) 3
m=(k-1)/k
Descargar

OPTIMIZACION INTELIGENTE DE REDES DE TRANSPORTE …