Domain-Specific Languages
Kathleen Fisher
Programming
languages:
Fortran
Cobol
C
C++
Java
ML
Perl
Simula
Lisp
Programming
languages:
scientific computation
Fortran
business applications
Cobol
compiler construction
ML
systems programming
C
C++
simulations
Java
Perl
Simula
web applications
user-interfaces
Lisp
symbolic computation
Programming
languages:
scientific computation
Fortran
business applications
Cobol
compiler construction
systems programming
C
C++
simulations
Java
Perl
ML
Simula
web applications
SQL:
Querying relational data
user-interfaces
Lisp
symbolic computation
Programming
languages:
scientific computation
Fortran
business applications
Cobol
XQuery:
compiler construction
Querying XML
systems programming
C
C++
simulations
Java
Perl
ML
Simula
web applications
SQL:
Querying relational data
user-interfaces
Lisp
symbolic computation
Programming
languages:
scientific computation
Fortran
business applications
Cobol
XQuery:
compiler construction
Querying XML
systems programming
C
C++
simulations
Java
Perl
ML
Simula
web applications
SQL:
Querying relational data
user-interfaces
XSLT:
Lisp
Transforming
XMLcomputation
symbolic
Programming
languages:
scientific computation
Fortran
business applications
Cobol
XQuery:
compiler construction
Querying XML
systems programming
C
C++
Java
simulations
Perl
ML
Simula
web applications
SQL:
Querying relational data
user-interfaces
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
scientific computation
Fortran
business applications
Cobol
XQuery:
compiler construction
Querying XML
systems programming
C
C++
Java
simulations
Perl
ML
web applications
SQL:
Querying relational data
Simula
Postscript:
user-interfaces
Printing
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
scientific computation
Cryptol:
Cryptography
Fortran
business applications
Cobol
XQuery:
compiler construction
Querying XML
systems programming
C
C++
Java
simulations
Perl
ML
web applications
SQL:
Querying relational data
Simula
Postscript:
user-interfaces
Printing
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
scientific computation
Cryptol:
Cryptography
Fortran
business applications
Cobol
systems programming
Hancock:
C
C++
Signature tracking
XQuery:
compiler construction
Querying XML
Java
simulations
Perl
ML
web applications
SQL:
Querying relational data
Simula
Postscript:
user-interfaces
Printing
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Cryptol:
Cryptography
Fortran
business applications
Cobol
systems programming
Hancock:
C
C++
Signature tracking
XQuery:
compiler construction
Querying XML
Java
simulations
Perl
ML
web applications
SQL:
Querying relational data
Simula
Postscript:
user-interfaces
Printing
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Cryptol:
Cryptography
Fortran
ASN.1, ASDL:
business applications
Data design
Cobol
systems programming
Hancock:
C
C++
Signature tracking
XQuery:
compiler construction
Querying XML
Java
simulations
Perl
ML
web applications
SQL:
Querying relational data
Simula
Postscript:
user-interfaces
Printing
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Cryptol:
Cryptography
Fortran
ASN.1, ASDL:
business applications
Data design
Cobol
systems programming
Hancock:
C
C++
Signature tracking
XQuery:
compiler construction
Java
Querying XML Lex/YACC:
Perl
ML
Parser
generation
web applications
SQL:
Querying relational data
simulations
Simula
Postscript:
user-interfaces
Printing
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Cryptol:
Cryptography
Fortran
ASN.1, ASDL:
business applications
Data design
Cobol
systems programming
awk, sed, find:
Hancock:
C
C++
O/S toolkit
Signature tracking
XQuery:
compiler construction
Java
Querying XML Lex/YACC:
Perl
ML
Parser
generation
web applications
SQL:
Querying relational data
simulations
Simula
Postscript:
user-interfaces
Printing
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Fortran
ASN.1, ASDL:
business applications
Data design
Cobol
Cryptol:
Cryptography
systems programming
awk, sed, find:
Hancock:
C
C++
O/S toolkit
Signature tracking
XQuery:
makefiles:
compiler construction
simulations
Java
Querying XML Lex/YACC:
Application construction
Perl
ML
Parser generation
web applications
SQL:
Querying relational data
Simula
Postscript:
user-interfaces
Printing
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Fortran
ASN.1, ASDL:
business applications
Data design
Cobol
Cryptol:
Cryptography
systems programming
awk, sed, find:
Hancock:
C
C++
O/S toolkit
Signature tracking
XQuery:
makefiles:
compiler construction
simulations
Java
Querying XML Lex/YACC:
Application construction
Perl
ML
Parser generation
autoconf:
Simula
web
applications
SQL:
Postscript:
System configuration
user-interfaces
Querying relational data
Printing
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Fortran
ASN.1, ASDL:
ESP:
business applications
Data design
Firmware
Cobol
Cryptol:
Cryptography
systems programming
awk, sed, find:
Hancock:
C
C++
O/S toolkit
Signature tracking
XQuery:
makefiles:
compiler construction
simulations
Java
Querying XML Lex/YACC:
Application construction
Perl
ML
Parser generation
autoconf:
Simula
web
applications
SQL:
Postscript:
System configuration
user-interfaces
Querying relational data
Printing
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Fortran
Cryptol:
Cryptography
ASN.1, ASDL:
ESP:
business applications
Data design
Firmware
Cobol
Teapot:
systems programming
awk, sed, find:Cache Hancock:
coherence
protocols
C
C++
O/S toolkit
Signature tracking
XQuery:
makefiles:
compiler construction
simulations
Java
Querying XML Lex/YACC:
Application construction
Perl
ML
Parser generation
autoconf:
Simula
web
applications
SQL:
Postscript:
System configuration
user-interfaces
Querying relational data
Printing
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Fortran
Cryptol:
Cryptography
ASN.1, ASDL:
ESP:
business applications
Data design
Firmware
Cobol
Teapot:
systems programming
awk, sed, find:Cache Hancock:
coherence
protocols
C
C++
O/S toolkit
Signature tracking
XQuery:
makefiles:
compiler construction
simulations
Java
Querying XML Lex/YACC:
Application construction
Perl
ML
Parser generation
autoconf:
Simula
web
applications
SQL:
Postscript:
System configuration
user-interfaces
Querying relational data Facile:
Printing
Architecture simulation
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Fortran
Cryptol:
Cryptography
ASN.1, ASDL:
ESP:
business applications
Data design
Firmware
Cobol
Teapot:
systems programming
Envision:
awk, sed, find:Cache Hancock:
coherence
protocols
C
Computer vision
C++
O/S toolkit
Signature tracking
XQuery:
makefiles:
compiler construction
simulations
Java
Querying XML Lex/YACC:
Application construction
Perl
ML
Parser generation
autoconf:
Simula
web
applications
SQL:
Postscript:
System configuration
user-interfaces
Querying relational data Facile:
Printing
Architecture simulation
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Fortran
Cryptol:
Cryptography
ASN.1, ASDL:
ESP:
business applications
Data design
Firmware
Cobol
Teapot:
systems programming
Envision:
awk, sed, find:Cache Hancock:
coherence
protocols
C
Computer vision
C++
O/S toolkit
Signature tracking
Fran:
Computer animation
XQuery:
makefiles:
compiler construction
simulations
Java
Querying XML Lex/YACC:
Application construction
Perl
ML
Parser generation
autoconf:
Simula
web
applications
SQL:
Postscript:
System configuration
user-interfaces
Querying relational data Facile:
Printing
Architecture simulation
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Cryptol:
Fortran
Haskore:
Cryptography
ASN.1,
ASDL:
ESP:
Music
composition
business applications
Data design
Firmware
Cobol
Teapot:
systems programming
Envision:
awk, sed, find:Cache Hancock:
coherence
protocols
C
Computer vision
C++
O/S toolkit
Signature tracking
Fran:
Computer animation
XQuery:
makefiles:
compiler construction
simulations
Java
Querying XML Lex/YACC:
Application construction
Perl
ML
Parser generation
autoconf:
Simula
web
applications
SQL:
Postscript:
System configuration
user-interfaces
Querying relational data Facile:
Printing
Architecture simulation
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Cryptol:
Fortran
Haskore:
Cryptography
ASN.1,
ASDL:
ESP:
Music
composition
business applications
Data design
Firmware
Cobol
Teapot:
systems programming
Envision:
awk, sed, find:Cache Hancock:
coherence
protocols
C
Computer vision
C++
O/S toolkit
Signature tracking
Fran:
Computer animation
XQuery:
makefiles:
compiler construction
simulations
Java
Querying XML Lex/YACC:
Application construction
Perl
Roll:
ML
Parser generation
autoconf:
Simula
Dice simulation
web
applications
SQL:
Postscript:
System configuration
user-interfaces
Querying relational data Facile:
Printing
Architecture simulation
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
Programming
languages:
PADS, Datascript:
scientific
computation
Data description
Cryptol:
Fortran
Haskore:
Cryptography
ASN.1,
ASDL:
ESP:
Music
composition
business applications
Data design
Firmware
Cobol
Teapot:
systems programming
Envision:
awk, sed, find:Cache Hancock:
coherence
protocols
C
Computer vision
C++
O/S toolkit
Signature tracking
Fran:
Computer animation
XQuery:
makefiles:
compiler construction
simulations
Java
Querying XML Lex/YACC:
Application construction
Perl
Roll:
ML
Parser generation
autoconf:
Simula
Dice simulation
web
applications
SQL:
Postscript:
System configuration
user-interfaces
Querying relational data Facile:
Printing
Architecture simulation
XSLT:
Lisp
Latex:
Transforming
XML
symbolic computation
Typesetting
and many
more…
Why DSLs?
• Why a language at all?
– Languages supply a rich interface to computers.
vs
– Languages directly provide a model of the
computational domain.
Tailored abstractions
• Increase accessibility for domain experts
• Improve reliability
– Programs are shorter.
– Compiler generates tedious boilerplate code.
• Allow programs to serve as
“living documentation”
Qu ickT i m e™ an d a
T IF F (Un co mp re ss ed ) d ec om p re ss or
a re ne ed ed to s ee th is pic tu re .
More for less
• Restricting expressiveness enables validation and
optimization at domain-level.
– SQL programs are guaranteed to terminate.
– YACC specifications are guaranteed to compile into
PDAs.
– Cryptol programs are guaranteed to require only finite
space.
Two for one specials
DSL
Executable
Two for one specials
Verification
support
DSL
Special
purpose
hardware
Executable
Qui ckTime™ and a
TIF F (Uncompressed) decompressor
are needed to see t his picture.
Auxiliary
tools
C/Java
libraries
Outline
• Introduction
– Language domains
– The case for domain specific languages
• Examples:
– ESP, SQL
– PADS
– Cryptol
• Conclusion
ESP
• Language for programming device firmware
• Computational model:
– Event-driven state-machines (based on CSP)
– Much easier to express in ESP than when coded
in C (Code is an order of magnitude smaller).
• Compiler generates:
– C code to compile to produce firmware
– SPIN input to model check program for
concurrency and memory errors.
Teapot is a similar DSL
for writing cache coherence protocols
SQL
Language for querying relational data bases.
Students
ID
NAME
01
Harry Potter
02
Hermione Granger
03
Ronald Weasley
SELECT Students.NAME,
Potions.GRADE
FROM Students, Potions
WHERE Students.ID = Potions.ID
Potions
ID
GRADE
NAME
GRADE
01
Satisfactory
Harry Potter
Satisfactory
02
Outstanding
Hermione Granger
Outstanding
03
Satisfactory
Ronald Weasley
Satisfactory
SQL
• SQL compiles into relational algebra with
select, project, and join logical operators.
• Query engine chooses corresponding
physical operators based on indices and
other statistics about the data.
• Years of research have gone into the best
query plan selection and join algorithms.
• Data analyst can be blissfully ignorant of
details under the covers.
PADS
• Data description language in development at
AT&T, Princeton, and University of Michigan.
• More information:
http://www.padsproj.org
Disclaimer: This is my project.
Data, data, everywhere!
Incredible amounts of data stored in well-behaved formats:
Databases:
XML:
Tools
•
•
•
•
•
•
•
•
•
Schema
Browsers
Query languages
Standards
Libraries
Books, documentation
Conversion tools
Vendor support
Consultants…
… but not all data is well-behaved!
Vast amounts of chaotic ad hoc data:
Tools
• Perl?
• Awk?
• C?
Ad hoc data from www.geneontology.org
!date: Fri Mar 18 21:00:28 PST 2005
!version: $Revision: 3.223 $
!type: % is_a is a
!type: < part_of part of
!type: ^ inverse_of inverse of
!type: | disjoint_from disjoint from $Gene_Ontology ;
GO:0003673 <biological_process ;
GO:0008150 %behavior ;
GO:0007610 ; synonym:behaviour %adult behavior ;
GO:0030534 ; synonym:adult behaviour %adult feeding behavior ;
GO:0008343 ; synonym:adult feeding behaviour %feeding behavior ;
GO:0007631 %adult locomotory behavior ;
GO:0008344 ;
Ad hoc in biology: Newick format
((raccoon:19.19959,bear:6.80041):0.84600,((sea_lion:11.
99700,
seal:12.00300):7.52973,((monkey:100.85930,cat:47.14069)
:20.59201,
weasel:18.87953):2.09460):3.87382,dog:25.46154);
(Bovine:0.69395,(Gibbon:0.36079,(Orang:0.33636,(Gorilla
:0.17147,(Chimp:0.19268,
Human:0.11927):0.08386):0.06124):0.15057):0.54939,Mouse
:1.21460):0.10;
(Bovine:0.69395,(Hylobates:0.36079,(Pongo:0.33636,(G._G
orilla:0.17147,
(P._paniscus:0.19268,H._sapiens:0.11927):0.08386):0.061
24):0.15057):0.54939, Rodent:1.21460);
Ad hoc data in chemistry
O=C([C@@H]2OC(C)=O)[C@@]3(C)[C@]([C@](CO4)
(OC(C)=O)[[email protected]]4C[C@@H]3O)([H])[[email protected]]
(OC(C7=CC=CC=C7)=O)[C@@]1(O)[C@@](C)(C)C2=C(C)
[C@@H](OC([[email protected]](O)[C@@H](NC(C6=CC=CC=C6)=O)
C5=CC=CC=C5)=O)C1
O
O
O
O
OH
NH
O
HO
O
H
O
OH O
A cO
O
Ad hoc data from www.investors.com
Date: 3/21/2005 1:00PM PACIFIC
Investor's Business Daily ®
Stock List Name: DAVE
Stock Company
Symbol Name
Price Price Volume EPS RS
Price Change % Change % Change Rating Rating
AET Aetna Inc
73.68 -0.22
0%
31% 64
93
GE
General Electric Co
36.01 0.13
0%
-8% 59
56
HD
Home Depot Inc
37.99 -0.89
-2%
63% 84
38
IBM Intl Business Machines 89.51 0.23
0%
-13% 66
35
INTC Intel Corp
23.50 0.09
0%
-47% 39
33
Data provided by William O'Neil + Co., Inc. © 2005. All Rights Reserved.
Investor's Business Daily is a registered trademark of Investor's Business Daily, Inc.
Reproduction or redistribution other than for personal use is prohibited.
All prices are delayed at least 20 minutes.
Ad hoc binary data: DNS packets
00000000: 9192 d8fb 8480 0001 05d8 0000 0000 0872
00000010: 6573 6561 7263 6803 6174 7403 636f 6d00
00000020: 00fc 0001 c00c 0006 0001 0000 0e10 0027
00000030: 036e 7331 c00c 0a68 6f73 746d 6173 7465
00000040: 72c0 0c77 64e5 4900 000e 1000 0003 8400
00000050: 36ee 8000 000e 10c0 0c00 0f00 0100 000e
00000060: 1000 0a00 0a05 6c69 6e75 78c0 0cc0 0c00
00000070: 0f00 0100 000e 1000 0c00 0a07 6d61 696c
00000080: 6d61 6ec0 0cc0 0c00 0100 0100 000e 1000
00000090: 0487 cf1a 16c0 0c00 0200 0100 000e 1000
000000a0: 0603 6e73 30c0 0cc0 0c00 0200 0100 000e
000000b0: 1000 02c0 2e03 5f67 63c0 0c00 2100 0100
000000c0: 0002 5800 1d00 0000 640c c404 7068 7973
000000d0: 0872 6573 6561 7263 6803 6174 7403 636f
...............r
esearch.att.com.
...............'
.ns1...hostmaste
r..wd.I.........
6...............
......linux.....
............mail
man.............
................
..ns0...........
......_gc...!...
..X.....d...phys
.research.att.co
Ad hoc data from AT&T
Name & Use
Representation
Size
Web server logs (CLF):
Measure web workloads
Fixed-column ASCII
records
 12 GB/week
Sirius data:
service activation
Variable-width ASCII
records
2.2GB/week
Fixed-width binary
records
~7GB/day
Various Cobol data
formats
~4000 files/day
ASCII
 15 sources,
GB/day
Monitor
Call detail:
Detect fraud
Altair data:
billing process
Regulus data:
Monitor IP network
Netflow:
IP network
Track
~15
Monitor Data-dependent number >1Gigabit/second
of fixed-width binary
records
Technical challenges
• Data arrives “as is.”
• Documentation is often out-of-date or nonexistent.
– Hijacked fields.
– Undocumented “missing value” representations.
• Data is buggy.
– Missing data, human error, malfunctioning machines, race
conditions on log entries, “extra” data, …
– Processing must detect relevant errors and respond in
application-specific ways.
– Errors are sometimes the most interesting portion of the data.
• Data sources often have high volume.
– Data may not fit into main memory.
Prior approaches
• Lex/Yacc
– No one uses them for ad hoc data.
• Perl/C
– Code brittle with respect to changes in input format.
– Analysis ends up interwoven with parsing, precluding
reuse.
– Error code, if written, swamps main-line computation. If
not written, errors can corrupt “good” data.
– Everything has to be coded by hand.
• Data description languages (PacketTypes, Datascript)
– Binary data
– Focus on correct data.
PADS
Data expert writes declarative description of data source:
– Physical format information
– Semantic constraints
Many data consumers use description and generated parser.
– Description serves as living documentation.
– Parser exhaustively detects errors without cluttering user code.
– From declarative specification, PADS generates auxiliary tools.
PADS architecture
PADS architecture
PADS architecture
PADS language
Type-based model: types indicate how to process associated data.
• Provides rich and extensible set of base types.
– Pint8, Puint8, …
// -123, 44
– Pstring(:’|’:)
// hello |
Pstring_FW(:3:)
// catdog
Pstring_ME(:”/a*/”:)
// aaaaaab
– Pdate, Ptime, Pip, …
• Provides type constructors to describe data source structure:
• Pstruct, Parray, Punion, Ptypedef, Penum
• Allows arbitrary predicates to describe expected properties.
Running example: CLF web log
• Common Log Format from Web Protocols and Practice.
207.136.97.50 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013
• Fields:
–
–
–
–
–
–
–
IP address of remote host
Remote identity (usually ‘-’ to indicate name not collected)
Authenticated user (usually ‘-’ to indicate name not collected)
Time associated with request
Request (request method, request-uri, and protocol version)
Response code
Content length
Example: Pstruct
Precord Pstruct http_weblog {
host client;
/' '; auth_id remoteID;
/' '; auth_id auth;
/“ [”; Pdate(:']':) date;
/“] ”; http_request request; /' '; Puint16_FW(:3:) response;
' '; Puint32 contentLength;
};
Client requesting service
Remote identity
Name of authenticated user
Timestamp of request
Request
/- 3-digit response code
/- Bytes in response
207.136.97.50 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013
Example: Parray
Parray host {
Puint8[4]: Psep(‘.’);
};
207.136.97.50 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013
Array declarations allow the user to specify:
• Size (fixed, lower-bounded, upper-bounded, unbounded)
• Psep, Pterm, and termination predicates
• Constraints over sequence of array elements
Array terminates upon exhausting EOF, reaching terminator, reaching
maximum size, or satisfying termination predicate.
User constraints
int chkVersion(http_v version, method_t meth) { …
Pstruct
'\"';
' ';
' ';
'\"';
};
};
http_request {
method_t
meth;
Pstring(:' ':) req_uri;
http_v
version : chkVersion(version, meth);
207.136.97.50 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013
CLF in PADS
Parray Phostname{
Pstring_SE(:"/[. ]/":) [] : Psep('.')
&& Pterm(Pnosep);
};
Punion client_t {
Pip
ip;
Phostname host;
};
/- 135.207.23.32
/- www.research.att.com
Pstruct request_t {
'\"';
method_t
meth;
' ';
Pstring(:' ':) req_uri;
' ';
version_t
version :
chkVersion(version, meth);
'\"';
};
Ptypedef Puint16_FW(:3:) response_t :
response_t x => { 100 <= x && x < 600};
Punion auth_id_t {
Pchar unauthorized : unauthorized == '-';
Pstring(:' ':) id;
};
Punion length_t {
Pchar unavailable : unavailable == '-';
Puint32 len;
};
Penum method_t {
GET,
PUT, POST, HEAD,
DELETE, LINK, UNLINK
};
Precord Pstruct entry_t
client_t
' '; auth_id_t
' '; auth_id_t
" ["; Pdate(:']':)
"] "; request_t
' '; response_t
' '; length_t
};
Pstruct version_t {
"HTTP/";
Puint8 major; '.';
Puint8 minor;
};
int chkVersion(version_t v, method_t m) {
if ((v.major == 1) && (v.minor == 1)) return 1;
if ((m == LINK) || (m == UNLINK)) return 0;
return 1;
};
Psource Parray clt_t {
entry_t [];
}
{
client;
remoteID;
auth;
date;
request;
response;
length;
PADS parsing
Perror_t entry_t_read(P_t *pdc, entry_t_m* mask,
entry_t_pd* pd, entry_t* rep);
Invariant: If mask is “check and set” and parse descriptor reports
no errors, then the in-memory representation is correct.
Leverage!
Convert PADS description into a collection of tools:
–
–
–
–
–
–
–
Accumulators
Histograms
Clustering tool
Formatters
Translator into XML, with corresponding XML Schema.
XQueries using Galax’s data interface
…
Long term goal: Provide a compelling suite of tools
to overcome the inertia of a new language and system.
Accumulators
• Statistical profile of “leaves” in a data source:
<top>.length : uint32
good: 53544
bad: 3824
pcnt-bad: 6.666
min: 35 max: 248591 avg: 4090.234
top 10 values out of 1000 distinct values:
tracked 99.552% of values
val: 3082 count: 1254 %-of-good: 2.342
val:
170 count: 1148 %-of-good: 2.144
. . .
Not all lengths
were legal!
. . . . . . . . . . . . . . . . . . . . . .
SUMMING
count: 9655 %-of-good: 18.032
• Suggested by AT&T user to get “bird’s eye” view of
their 4000 daily feeds.
• Used at AT&T for vetting data (and for debugging
PADS descriptions).
Pretty printer
• Customizable program to reformat data:
207.136.97.49 - - [15/Oct/1997:18:46:51 -0700] "GET /tk/p.txt HTTP/1.0" 200 30
tj62.aol.com - - [16/Oct/1997:14:32:22 -0700] "POST [email protected]/confirm HTTP/1.0" 200 941
Normalize time zones
Normalize delimiters
Drop unnecessary values
Filter/repair errors
207.136.97.49|-|-|10/16/97:01:46:51|GET|/tk/p.txt|1|0|200|30
tj62.aol.com|-|-|10/16/97:21:32:[email protected]/confirm|1|0|200|941
• Users can override pretty printing on a per type basis.
• Used by AT&T’s Regulus project to normalize
monitoring data before loading into a relational
database.
Why a DSL?
• Dramatically shorter code (68 versus ~7.9K lines).
• Description is short enough to serve as
documentation.
• Safer: error code inserted automatically and
completely (as long as the is compiler right…).
• Leverage: produce value-added tools.
Cryptol
• A language, developed at Galois, for
expressing cryptographic algorithms.
• More information:
http://www.cryptol.net
Cryptol
The Language of
Cryptography
Thanks to Galois for contributing material for these slides.
Crypto-algorithm correctness
• Verification and validation a critical piece of
crypto-modernization programs.
• Exploding complexity and requirements
– Number of algorithms, hardware platforms
– High assurance requirements
• 25% of algorithms submitted for FIPS
validation had flaws (according to Director of NIST
CMVP, 2002)
Why is this hard?
Variety of target
architectures
Requires skills in math
AND programming
Variety of requirements
Validation is complex
and tedious
Lack of clear reference implementations
It’s hard to
#define MDS_GF_FDBK
0x169
#define LFSR1(x) ( ((x) >> 1) ^ (((x) & 0x01) ?
MDS_GF_FDBK/2 : 0))
#define LFSR2(x) ( ((x) >> 2) ^ (((x) & 0x02) ?
MDS_GF_FDBK/2 : 0)
^ (((x) & 0x01) ?
MDS_GF_FDBK/4 : 0))
#define Mx_1(x) ((DWORD) (x))
#define Mx_X(x) ((DWORD) ((x) ^ LFSR2(x)))
#define Mx_Y(x) ((DWORD) ((x) ^ LFSR1(x) ^
LFSR2(x)))
#define M00
Mul_1
#define M01
Mul_Y
return ((M00(b[0]) ^ M01(b[1]) ^
M02(b[2]) ^ M03(b[3]))
) ^
((M10(b[0]) ^ M11(b[1]) ^
M12(b[2])^ M13(b[3]))
<< 8)^
relate implementations
to the underlying
math
((M20(b[0]) ^ M21(b[1]) ^
M22(b[2])^ M23(b[3])) <<16)^
((M30(b[0]) ^ M31(b[1]) ^
M32(b[2])^ M33(b[3])) <<24);
One Specification - Many Uses
Assured
Implementation
Algorithm
specification
Validate
Design
Models,
Verify crypto
test cases implementations
Cryptol
Interpreter
w0=u-I*I modp + u-I*wl mod p
s=f*(w0 +pw2) (mod q)
Build
Cryptol
Tools
Target
HW code
FPGA(s)
C or Java
Special purpose
processor
Algorithm
specification
Cryptol
Interpreter
w0=u-I*I modp + u-I*wl mod p
s=f*(w0 +pw2) (mod q)
rc6ks : {a} (w >= width a) =>
[a][8] -> [r+2][2][w];
rc6ks key = split (rs >>> (v - 3 * nk))
where {
c = max (1, (width key + 3) / (w / 8));
v = 3 * max (c, nk);
initS = [pw (pw+qw) ..]@@[0 .. (nk-1)];
padKey : [4*c][8];
padKey = key # zero;
initL : [c][w];
initL = split (join padKey);
ss = [| (s+a+b) <<< 3
|| s <- initS # ss
|| a <- [0] # ss
|| b <- [0] # ls |];
ls = [| (l+a+b) <<< (a+b)
|| l <- initL # ls
|| a <- ss
|| b <- [0] # ls |];
rs = ss @@ [(v-nk) .. (v-1)];
};
Validate
Design
•
•
•
•
Build
Models crypto-algorithm
Natural expression
Clear and unambiguous
Structure and guide an
implementation
Key ideas in Cryptol
• Domain-specific data and control abstractions
– Sequences
– Recurrence relations (not for-loops)
• Powerful data transformations
– Data may be viewed in many ways
– Machine independent
• Flexible sizes
– Algorithms parameterized on size
• Size constraints are explicit in many specs
• Number of iterations may depend on size
– A Size-Type system captures and maintains size constraints
Choosing what to leave out is critical
Cryptol programs
• File of mathematical definitions
– Two kinds of definitions: values and functions
– Definitions may be accompanied by a type
• Definitions are computationally neutral
– Cryptol tools provide the computational content (interpreters,
compilers, code generators, verifiers)
x : [4][32];
x = [23 13 1 0];
F : ([16],[16]) -> [16];
F (x,x’) = 2 * x + x’;
Data types
• Homogeneous sequences
[False True False True False False True]
[[1 2 3 4] [5 6 7 8]]
• Numbers are represented as sequences of bits
– Aka “words”
– Decimal, octal (0o), hex (0x), binary (0b)
123, 0xF4, 0b11110100
• Quoted strings are just syntactic sugar for sequences of
8-bit words
“abc” = [0x61 0x62 0x63]
• Heterogenous data can be grouped together into tuples
(13, “hello”, True)
Sequences
• Sequence operators
– Concatenation (#), indexing (@), size
[1..5] # [3 6 8] = [1 2 3 4 5 3 6 8]
[50 .. 99] @ 10 = 60
• Shifts and Rotations
– Shifts (<<, >>), Rotations (<<<, >>>)
[0 1 2 3] << 2 = [2 3 0 0]
[0 1 2 3] <<< 2 = [2 3 0 1]
Cryptol types
• Types express size and shape of data
[[0x1FE 0x11] [0x132 0x183]
[0x1B4 0x5C] [ 0x26 0x7A]]
has type
[4][2][9]
• Strong typing
– The types provide mathematical guarantees on interfaces
• Type inference
– Use type declarations for active documentation
– All other types computed
• Parametric polymorphism
– Express size parameterization of algorithms
AES Types
•
“The State can be pictured as a rectangular array of bytes. This array has four
rows, the number of columns is denoted by Nb and is equal to the block length
divided by 32.”
state : [4][Nb][8];
•
“The input and output used by Rijndael at its external interface are considered
to be one-dimensional arrays of 8-bit bytes numbered upwards from 0 to the
4*Nb-1. The Cipher Key is considered to be a one-dimensional array of 8-bit
bytes numbered upwards from 0 to the 4*Nk-1.”
input : [4 * Nb][8];
key
: [4 * Nk][8];
PT
Key addition
AES Block Diagram
Byte substitution
: [4][Nb][8]
Shift row
Mix column
XK
Key addition
Byte substitution
: [Nx][4][Nb][8]
Shift row
: [4][Nb][8]
Key addition
CT
Nb
AES API
keySchedule : [4*Nk][8] -> Xkey
encrypt : (Xkey,[4*Nb][8]) -> [4*Nb][8]
decrypt : (Xkey,[4*Nb][8]) -> [4*Nb][8]
Xkey = ([4][Nb][8],
[max(Nb,Nk)+5][4][Nb][8],
[4][Nb][8])
Nk
Splitting and Joining sequences
0x99FAC6F975BABB3E
split
Polymorphic operation:
use a type to resolve
how many terms in
the split list
[0x99 0xFA 0xC6 0xF9 0x75 0xBA 0xBB 0x3E]
join
0x99FAC6F975BABB3E
Striping
2D sequences considered to be row major
stripe : [4*Nb][8] -> [4][Nb][8];
stripe(block) = transpose(split(block));
unstripe : [4][Nb][8] -> [4*Nb][8];
unstripe(state) = join(transpose(state));
AES encryption
encrypt : (Xkey,[4*Nb][8]) -> [4*Nb][8];
encrypt(XK,PT) = unstripe(Rounds(State,XK))
where {
State : [4][Nb][8];
State = stripe(PT);
};
Sequence Comprehensions
• The comprehension notion borrowed from set theory
– { a+b | a Î A, b Î B}
– Adapted to sequences
• Applying an operation to each element
[| 2*x + 3 ||
= [ 5 7 9 11 ]
x <- [1 2 3 4] |]
Traversals
• Cartesian traversal
[| [x y]
= [[0
[1
[2
|| x <- [0 1 2], y <- [3 4] |]
3] [0 4]
3] [1 4]
3] [2 4]]
• Parallel traversal
[| x + y
=
||
||
[4 6 8]
x <- [1 2 3]
y <- [3 4 5 6 7] |]
Row traversals in AES
ShiftRow : [4][Nb][8] -> [4][Nb][8];
ShiftRow(state)
= [| row <<< i || row <- state
|| i <- [0 1 2 3] |]
Recurrence
Textual description of shift circuits
– Follow mathematics: use stream-equations
– Stream-definitions can be recursive
nats = [0] # [| y+1 || y <- nats |];
nats
0
+1
More complex stream equations
as = [Ox3F OxE2 Ox65 OxCA] # new;
new = [| a ^ b ^ c || a <- as
|| b <- drop(1,as)
|| c <- drop(3,as)|];
as
3F
E2
65
CA
new
^
^
AES rounds
Rounds(State,(initialKey,rndKeys,finalKey)) = final
where {
PT
istate = State ^ initialKey;
rnds = [istate] # [| Round(state,key)
|| state <- rnds
|| key <- rndKeys |];
final = FinalRound(last(rnds),
finalKey);
};
XK
CT
Usage: Testing
Test cases
Cryptol
Tools
Cryptol
Reference
Spec
Hand coded
implementation
•
•
Reference
Test
Cases
Interpret and
Validate
Validated
Implementation
•
Generates “known good
tests”
Built-in capture of
intermediate vectors
simplifies debugging
Easy to generate new
intermediate vectors as
needed
Usage: Verification
Models
Cryptol
Tools
Cryptol
Reference
Spec
Symbolic
ACL2
Model of
Reference
Hand-coded
Implementation
Model of
Implementation
Ideal for reference implementations
• Domain Specific
– Naturally understandable to developers
– Simplifies expression, inspection, reuse
• Executable
– Run tests and debug for correctness
– Generate test cases
• Declarative
– Not implementation-specific, concise
– Multiple uses – test, generation, model building, etc.
– Highly retargetable to any architecture
• Unambiguous
– Formal basis
– Precise syntax and semantics
– Independent of underlying machine models
Outline
• Introduction
– Language domains
– The case for domain specific languages
• Examples:
– ESP, SQL
– PADS
– Cryptol
• Conclusion
Tailored abstractions
• Accessible to domain experts
– Cryptol: cryptographers
– SQL: data analysts
• Program reliability (code size reduction)
– PADS generates error detection code
– ESP generates state machine context switching
• Living documentation
– Cryptol implementations as reference specifications
– PADS descriptions document ad hoc data formats
More for less
• Cryptol leaves out
– recursion to support compilation in finite space.
– imperative variables to support mathematical
reasoning.
• ESP leaves out recursive data structures and
buffered channels to facilitate model
checking.
• SQL and YACC restrict control flow to ensure
efficient compilation.
Two for one specials
• Specify once, reap multiple rewards
– Cryptol: reference implementation, testing support,
theorem proving support, implementations for
special purpose hardware.
– PADS: parser, pretty printer, statistical profiler,
formatting tool, integration with Xquery.
– ESP: firmware code and model checking input
– Teapot: cache coherency protocol implementation
and model checking input.
– Roll: generates dice rolls and probability
distributions.
Why not libraries?
• Some DSLs are in fact libraries
– Example: Haskore, a language for composing music.
– Fits best in languages with good control-flow
abstractions and overloading mechanisms, eg,
Haskell and C++.
• But:
– Complex libraries can be hard to use.
– Type checking only at host language level.
– More difficult to leverage domain knowledge or to
generate more than one artifact.
Disadvantages of DSLs
• Users have to learn a new language.
• Implementation and maintenance of DSL are
daunting, particularly for narrowly focused
domain.
• Tool support can be lacking:
– Debuggers, profilers, interactive development
environments, …
Summary
• All languages have a domain.
• Languages provide a rich interface to computers.
• Tailored abstractions are powerful:
– support domain experts
– make code more reliable (shorter: boring code is generated)
• Less is more
– Extra reasoning principles & more optimization opportunities
• Two for one specials
– Executable, verification support, auxiliary tools, …
• Languages are constantly being designed,
implemented, and used.
Descargar

Document