3- 1
Fundamentals of Corporate Finance
Third Edition
Chapter 3
The Time
Value of
Money
Brealey
Myers Marcus
slides by Matthew Will
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 2
Topics Covered
Future Values
Present Values
Multiple Cash Flows
Perpetuities and Annuities
Inflation & Time Value
Effective Annual Interest Rate
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 3
Future Values
Future Value - Amount to which an
investment will grow after earning interest.
Compound Interest - Interest earned on
interest.
Simple Interest - Interest earned only on the
original investment.
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 4
Future Values
Example - Simple Interest
Interest earned at a rate of 6% for five years on a
principal balance of $100.
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 5
Future Values
Example - Simple Interest
Interest earned at a rate of 6% for five years on a
principal balance of $100.
Interest Earned Per Year = 100 x .06 = $ 6
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 6
Future Values
Example - Simple Interest
Interest earned at a rate of 6% for five years on a
principal balance of $100.
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 7
Future Values
Example - Simple Interest
Interest earned at a rate of 6% for five years on a
principal balance of $100.
Today
1
Future Years
2
3
4
5
Interest Earned
Value
100
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 8
Future Values
Example - Simple Interest
Interest earned at a rate of 6% for five years on a
principal balance of $100.
Today
Interest Earned
Value
100
Irwin/McGraw-Hill
1
6
106
Future Years
2
3
4
5
©The McGraw-Hill Companies, Inc.,2001
3- 9
Future Values
Example - Simple Interest
Interest earned at a rate of 6% for five years on a
principal balance of $100.
Today
Interest Earned
Value
100
Irwin/McGraw-Hill
1
6
106
Future Years
2
3
6
112
4
5
©The McGraw-Hill Companies, Inc.,2001
3- 10
Future Values
Example - Simple Interest
Interest earned at a rate of 6% for five years on a
principal balance of $100.
Today
Interest Earned
Value
100
Irwin/McGraw-Hill
1
6
106
Future Years
2
3
6
6
112 118
4
5
©The McGraw-Hill Companies, Inc.,2001
3- 11
Future Values
Example - Simple Interest
Interest earned at a rate of 6% for five years on a
principal balance of $100.
Today
Interest Earned
Value
100
Irwin/McGraw-Hill
1
6
106
Future Years
2
3
4
6
6
6
112 118 124
5
©The McGraw-Hill Companies, Inc.,2001
3- 12
Future Values
Example - Simple Interest
Interest earned at a rate of 6% for five years on a
principal balance of $100.
Today
Interest Earned
Value
100
1
6
106
Future Years
2
3
4
5
6
6
6
6
112 118 124 130
Value at the end of Year 5 = $130
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 13
Future Values
Example - Compound Interest
Interest earned at a rate of 6% for five years on the
previous year’s balance.
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 14
Future Values
Example - Compound Interest
Interest earned at a rate of 6% for five years on the
previous year’s balance.
Interest Earned Per Year =Prior Year Balance x .06
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 15
Future Values
Example - Compound Interest
Interest earned at a rate of 6% for five years on
the previous year’s balance.
Today
1
Future Years
2
3
4
5
Interest Earned
Value
100
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 16
Future Values
Example - Compound Interest
Interest earned at a rate of 6% for five years on
the previous year’s balance.
Today
Interest Earned
Value
100
Irwin/McGraw-Hill
1
6.00
106.00
Future Years
2
3
4
5
©The McGraw-Hill Companies, Inc.,2001
3- 17
Future Values
Example - Compound Interest
Interest earned at a rate of 6% for five years on
the previous year’s balance.
Today
Interest Earned
Value
100
Irwin/McGraw-Hill
Future Years
1
2
3
6.00 6.36
106.00 112.36
4
5
©The McGraw-Hill Companies, Inc.,2001
3- 18
Future Values
Example - Compound Interest
Interest earned at a rate of 6% for five years on
the previous year’s balance.
Today
Interest Earned
Value
100
Irwin/McGraw-Hill
Future Years
1
2
3
6.00 6.36 6.74
106.00 112.36 119.10
4
5
©The McGraw-Hill Companies, Inc.,2001
3- 19
Future Values
Example - Compound Interest
Interest earned at a rate of 6% for five years on
the previous year’s balance.
Today
Interest Earned
Value
100
Irwin/McGraw-Hill
Future Years
1
2
3
4
6.00 6.36 6.74 7.15
106.00 112.36 119.10 126.25
5
©The McGraw-Hill Companies, Inc.,2001
3- 20
Future Values
Example - Compound Interest
Interest earned at a rate of 6% for five years on
the previous year’s balance.
Today
Interest Earned
Value
100
Future Years
1
2
3
4
5
6.00 6.36 6.74 7.15 7.57
106.00 112.36 119.10 126.25 133.82
Value at the end of Year 5 = $133.82
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 21
Future Values
Future Value of $100 = FV
F V  $ 1 0 0  (1  r )
Irwin/McGraw-Hill
t
©The McGraw-Hill Companies, Inc.,2001
3- 22
Future Values
F V  $ 1 0 0  (1  r )
t
Example - FV
What is the future value of $100 if interest is
compounded annually at a rate of 6% for five years?
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 23
Future Values
F V  $ 1 0 0  (1  r )
t
Example - FV
What is the future value of $100 if interest is
compounded annually at a rate of 6% for five years?
FV  $ 100  (1  . 06 )  $ 133 . 82
5
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 24
Future Values with Compounding
Interest Rates
70
0%
60
5%
FV of $1
50
10%
15%
40
30
20
10
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
0
Number of Years
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 25
Manhattan Island Sale
Peter Minuit bought Manhattan Island for $24 in 1626.
Was this a good deal?
To answer, determine $24 is worth in the year 2000,
compounded at 8%.
FV  $ 24  (1  . 08 )
374
 $ 75 . 979 trillion
FYI - The value of Manhattan Island land is
well below this figure.
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 26
Present Values
Present Value
Value today of a
future cash
flow.
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 27
Present Values
Present Value
Discount Factor
Value today of a
future cash
flow.
Present value of
a $1 future
payment.
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 28
Present Values
Present Value
Discount Factor
Value today of a
future cash
flow.
Present value of
a $1 future
payment.
Discount Rate
Interest rate used
to compute
present values of
future cash flows.
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 29
Present Values
P re se n t V a lu e = P V
PV =
Irwin/McGraw-Hill
F u tu re V a lu e a fte r t p e rio d s
(1 + r)
t
©The McGraw-Hill Companies, Inc.,2001
3- 30
Present Values
Example
You just bought a new computer for $3,000. The payment
terms are 2 years same as cash. If you can earn 8% on
your money, how much money should you set aside today
in order to make the payment when due in two years?
PV 
Irwin/McGraw-Hill
3000
( 1 . 08 )
2
 $ 2 ,572
©The McGraw-Hill Companies, Inc.,2001
3- 31
Present Values
Discount Factor = DF = PV of $1
DF 
1
(1 r )
t
Discount Factors can be used to compute
the present value of any cash flow.
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
Time Value of Money
3- 32
(applications)
The PV formula has many applications.
Given any variables in the equation, you
can solve for the remaining variable.
PV  FV 
Irwin/McGraw-Hill
1
(1 r )
t
©The McGraw-Hill Companies, Inc.,2001
Time Value of Money
3- 33
(applications)
Value of Free Credit
Implied Interest Rates
Internal Rate of Return
Time necessary to accumulate funds
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 34
PV of Multiple Cash Flows
Example
Your auto dealer gives you the choice to pay $15,500 cash
now, or make three payments: $8,000 now and $4,000 at
the end of the following two years. If your cost of money is
8%, which do you prefer?
Immediate payment
PV 1 
PV 2 
Total PV
Irwin/McGraw-Hill
1
 3, 703 . 70
2
 3, 429 . 36
4 , 000
( 1  . 08 )
4 , 000
( 1  . 08 )
8,000.00
 $15,133.06
©The McGraw-Hill Companies, Inc.,2001
3- 35
PV of Multiple Cash Flows
PVs can be added together to evaluate
multiple cash flows.
PV 
Irwin/McGraw-Hill
C1
(1 r )
1

C2
(1 r )
2
 ....
©The McGraw-Hill Companies, Inc.,2001
3- 36
Perpetuities & Annuities
Perpetuity
A stream of level cash payments
that never ends.
Annuity
Equally spaced level stream of cash
flows for a limited period of time.
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 37
Perpetuities & Annuities
PV of Perpetuity Formula
PV 
C
r
C = cash payment
r = interest rate
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 38
Perpetuities & Annuities
Example - Perpetuity
In order to create an endowment, which pays
$100,000 per year, forever, how much money must
be set aside today in the rate of interest is 10%?
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 39
Perpetuities & Annuities
Example - Perpetuity
In order to create an endowment, which pays
$100,000 per year, forever, how much money must
be set aside today in the rate of interest is 10%?
PV 
Irwin/McGraw-Hill
100 ,000
.1 0
 $ 1, 0 0 0 , 0 0 0
©The McGraw-Hill Companies, Inc.,2001
3- 40
Perpetuities & Annuities
Example - continued
If the first perpetuity payment will not be received
until three years from today, how much money
needs to be set aside today?
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 41
Perpetuities & Annuities
Example - continued
If the first perpetuity payment will not be received
until three years from today, how much money
needs to be set aside today?
PV 
Irwin/McGraw-Hill
1,0 0 0 ,0 0 0
( 1  .1 0 )
3
 $ 7 5 1, 3 1 5
©The McGraw-Hill Companies, Inc.,2001
3- 42
Perpetuities & Annuities
PV of Annuity Formula
PV  C

1
r

1
r (1 r )
t

C = cash payment
r = interest rate
t = Number of years cash payment is received
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 43
Perpetuities & Annuities
PV Annuity Factor (PVAF) - The present
value of $1 a year for each of t years.
PVAF 
Irwin/McGraw-Hill

1
r

1
r (1 r )
t

©The McGraw-Hill Companies, Inc.,2001
3- 44
Perpetuities & Annuities
Example - Annuity
You are purchasing a car. You are scheduled to
make 3 annual installments of $4,000 per year.
Given a rate of interest of 10%, what is the price
you are paying for the car (i.e. what is the PV)?
P V  4 ,0 0 0

1
.1 0

1
.1 0 ( 1  .1 0 )
3

P V  $ 9 , 9 4 7 .4 1
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 45
Perpetuities & Annuities
Applications
Value of payments
Implied interest rate for an annuity
Calculation of periodic payments
Mortgage
payment
Annual income from an investment payout
Future Value of annual payments
F V   C  P V A F   (1  r )
Irwin/McGraw-Hill
t
©The McGraw-Hill Companies, Inc.,2001
3- 46
Perpetuities & Annuities
Example - Future Value of annual payments
You plan to save $4,000 every year for 20 years
and then retire. Given a 10% rate of interest, what
will be the FV of your retirement account?
F V  4 ,0 0 0

1
.1 0

1
.1 0 ( 1  .1 0 )
20
  (1  .1 0 )
20
F V  $ 2 2 9 ,1 0 0
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 47
Inflation
Inflation - Rate at which prices as a whole are
increasing.
Nominal Interest Rate - Rate at which money
invested grows.
Real Interest Rate - Rate at which the
purchasing power of an investment increases.
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 48
Inflation
1 + n o m in a l in te re s t ra te
1  re a l in te re st ra te =
1 + in fla tio n ra te
approximation formula
R e a l in t. ra te  n o m in a l in t. ra te - in fla tio n ra te
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 49
Inflation
Example
If the interest rate on one year govt. bonds is 5.0%
and the inflation rate is 2.2%, what is the real
interest rate?
1 + real interest rate =
1 + .050
1 + .022
Savings
Bond
1 + real interest rate = 1 .0 27
R eal interest rate = .0 27 or 2 .7 %
A p p rox im atio n = .05 0 - .022 o r .028 o r 2 .8 %
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 50
Effective Interest Rates
Effective Annual Interest Rate - Interest rate
that is annualized using compound interest.
Annual Percentage Rate - Interest rate that is
annualized using simple interest.
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 51
Effective Interest Rates
example
Given a monthly rate of 1%, what is the Effective
Annual Rate(EAR)? What is the Annual
Percentage Rate (APR)?
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 52
Effective Interest Rates
example
Given a monthly rate of 1%, what is the Effective
Annual Rate(EAR)? What is the Annual
Percentage Rate (APR)?
E A R = (1 + .0 1 )
12
- 1 = r
E A R = (1 + .0 1 )
12
- 1 = .1 2 6 8 o r 1 2 .6 8 %
A P R = .0 1 x 1 2 = .1 2 o r 1 2 .0 0 %
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
3- 53
Web Resources
invest-faq.com/articles/analy-fut-prs-val.html
www.bankrate.com/brm/default.asp
www.financenter.com
www.financialplayerscenter.com/Overview.html
Click to access web sites
Internet connection required
Irwin/McGraw-Hill
©The McGraw-Hill Companies, Inc.,2001
Descargar

Irwin/McGraw-Hill