COMS 4705: Natural Language Processing
Fall 2010
Machine Translation
Dr. Nizar Habash
Center for Computational Learning Systems
Columbia University
Why (Machine) Translation?
Languages in the world
• 6,800 living languages
• 600 with written tradition
• 95% of world population
speaks 100 languages
Translation Market
• $26 Billion Global Market
(2010)
• Doubling every five years
(Donald Barabé, invited talk, MT Summit 2003)
Why (Machine) Translation?
Languages in the world
• 6,800 living languages
• 600 with written tradition
• 95% of world population
speaks 100 languages
Translation Market
• $26 Billion Global Market
(2010)
• Doubling every five years
(Donald Barabé, invited talk, MT Summit 2003)
Machine Translation
Science Fiction
• Star Trek Universal Translator
an "extremely sophisticated computer program" which functions
by "analyzing the
patterns" of an unknown foreign
language, starting from a speech
sample of two or more speakers
in conversation. The more
extensive the conversational
sample, the more accurate and
reliable is the "translation matrix"….
Machine Translation Reality
http://www.medialocate.com/
Machine Translation Reality
• Currently, Google offers translations between the
following languages  over 3,000 pairs
Afrikaans
Albanian
Arabic
Armenian
Azerbaijani
Basque
Belarusian
Bulgarian
Catalan
Chinese
Croatian Czech
Danish
Dutch
English
Estonian
Filipino
Finnish
French
Galician
Georgian
German
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Malay
Maltese
Norwegian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Thai
Turkish
Ukrainian
Urdu
Vietnamese
Welsh
Yiddish
“BBC found similar support”!!!
Why Machine Translation?
• Full Translation
– Domain specific, e.g., Weather reports
• Machine-aided Translation
– Requires post-editing
• Cross-lingual NLP applications
– Cross-language IR
– Cross-language Summarization
• Testing grounds
– Extrinsic evaluation of NLP tools, e.g., parsers, pos
taggers, tokenizers, etc.
Road Map
• Multilingual Challenges for MT
• MT Approaches
• MT Evaluation
Multilingual Challenges
• Orthographic Variations
– Ambiguous spelling
• ‫كتب االوالد اشعارا‬
‫األوال ُد اش َعارا‬
ْ ‫َك َت َب‬
– Ambiguous word boundaries
•
• Lexical Ambiguity
– Bank  ‫( بنك‬financial) vs. ‫( ضفة‬river)
– Eat  essen (human) vs. fressen (animal)
Multilingual Challenges
Morphological Variations
• Affixational (prefix/suffix) vs. Templatic (Root+Pattern)
write
kill
do
 written
 killed
 done
‫كتب‬
‫قتل‬
‫فعل‬



‫مكتوب‬
‫مقتول‬
‫مفعول‬
• Tokenization (aka segmentation+normalization)
conj
noun
article
plural
And the cars 
‫ والسيارات‬
Et les voitures 
and the cars
w Al SyArAt
et le voitures
Multilingual Challenges
Syntactic Variations
‫يقرأ الطالب المجتهد كتابا عن الصين في الصف‬
read the-student the-diligent a-book about china in the-classroom
the diligent student is reading a book about china in the classroom
这位勤奋的学生在教室读一本关于中国的书
this quant diligent de student in classroom read one quant about china de book
Arabic
Subj-Verb
V Subj
Subj V
English
Chinese
Subj V
Subj … V
Verb-PP
V…PP
V…PP
Adjectives
N Adj
Adj N
Possessives
N Poss
Relatives
N Rel
N of Poss
Poss ’s N
N Rel
V PP
PP V
Adj de N
Poss de N
Rel de N
Road Map
• Multilingual Challenges for MT
• MT Approaches
• MT Evaluation
MT Approaches
MT Pyramid
Source meaning
Target meaning
Source syntax
Source word
Analysis
Target syntax
Gisting
Target word
Generation
MT Approaches
Gisting Example
Sobre la base de dichas experiencias se estableció en 1988 una metodología.
Envelope her basis out speak experiences them settle at 1988 one methodology.
On the basis of these experiences, a methodology was arrived at in 1988.
MT Approaches
MT Pyramid
Source meaning
Source syntax
Source word
Analysis
Target meaning
Transfer
Gisting
Target syntax
Target word
Generation
MT Approaches
Transfer Example
• Transfer Lexicon
– Map SL structure to TL structure
poner
:subj
butter
:mod
:obj
X
mantequilla

en
:subj
X
:obj
Y
:obj
Y
X puso mantequilla en Y
X buttered Y
MT Approaches
MT Pyramid
Source meaning
Source syntax
Source word
Analysis
Interlingua
Transfer
Gisting
Target meaning
Target syntax
Target word
Generation
MT Approaches
Interlingua Example: Lexical Conceptual Structure
(Dorr, 1993)
MT Approaches
MT Pyramid
Source meaning
Source syntax
Source word
Analysis
Interlingua
Transfer
Gisting
Target meaning
Target syntax
Target word
Generation
MT Approaches
MT Pyramid
Source meaning Interlingual Lexicons
Source syntax
Source word
Analysis
Transfer Lexicons
Target meaning
Target syntax
Dictionaries/Parallel Corpora
Target word
Generation
MT Approaches
Statistical vs. Rule-based
Source meaning
Source syntax
Source word
Analysis
Target meaning
Target syntax
Target word
Generation
Statistical MT
Noisy Channel Model
Portions from http://www.clsp.jhu.edu/ws03/preworkshop/lecture_yamada.pdf
Slide based on Kevin Knight’s http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt
Statistical MT
Automatic Word Alignment
•
GIZA++
– A statistical machine translation toolkit used to train word alignments.
– Uses Expectation-Maximization with various constraints to bootstrap
alignments
Maria
Mary
did
not
slap
the
green
witch
no dio
una bofetada a
la
bruja verde
Statistical MT
IBM Model (Word-based Model)
http://www.clsp.jhu.edu/ws03/preworkshop/lecture_yamada.pdf
Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt
Phrase-Based Statistical MT
Morgen
fliege
ich
Tomorrow
I
will fly
nach Kanada
to the conference
zur Konferenz
In Canada
• Foreign input segmented in to phrases
– “phrase” is any sequence of words
• Each phrase is probabilistically translated into English
– P(to the conference | zur Konferenz)
– P(into the meeting | zur Konferenz)
• Phrases are probabilistically re-ordered
See [Koehn et al, 2003] for an intro.
This is state-of-the-art!
Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt
Word Alignment Induced Phrases
Maria
no
dió
una bofetada a
la
bruja verde
Mary
did
not
slap
the
green
witch
(Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green)
Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt
Word Alignment Induced Phrases
Maria
no
dió
una bofetada a
la
bruja verde
Mary
did
not
slap
the
green
witch
(Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green)
(a la, the) (dió una bofetada a, slap the)
Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt
Word Alignment Induced Phrases
Maria
no
dió
una bofetada a
la
bruja verde
Mary
did
not
slap
the
green
witch
(Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green)
(a la, the) (dió una bofetada a, slap the)
(Maria no, Mary did not) (no dió una bofetada, did not slap), (dió una bofetada a la, slap the)
(bruja verde, green witch)
Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt
Word Alignment Induced Phrases
Maria
no
dió
una bofetada a
la
bruja verde
Mary
did
not
slap
the
green
witch
(Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green)
(a la, the) (dió una bofetada a, slap the)
(Maria no, Mary did not) (no dió una bofetada, did not slap), (dió una bofetada a la, slap the)
(bruja verde, green witch) (Maria no dió una bofetada, Mary did not slap)
(a la bruja verde, the green witch) …
Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt
Word Alignment Induced Phrases
Maria
no
dió
una bofetada a
la
bruja verde
Mary
did
not
slap
the
green
witch
(Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green)
(a la, the) (dió una bofetada a, slap the)
(Maria no, Mary did not) (no dió una bofetada, did not slap), (dió una bofetada a la, slap the)
(bruja verde, green witch) (Maria no dió una bofetada, Mary did not slap)
(a la bruja verde, the green witch) …
(Maria no dió una bofetada a la bruja verde, Mary did not slap the green witch)
Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt
Advantages of Phrase-Based SMT
• Many-to-many mappings can handle noncompositional phrases
• Local context is very useful for
disambiguating
– “Interest rate”  …
– “Interest in”  …
• The more data, the longer the learned
phrases
– Sometimes whole sentences
MT Approaches
Statistical vs. Rule-based vs. Hybrid
Source meaning
Source syntax
Source word
Analysis
Target meaning
Target syntax
Target word
Generation
MT Approaches
Practical Considerations
• Resources Availability
– Parsers and Generators
• Input/Output compatability
– Translation Lexicons
• Word-based vs. Transfer/Interlingua
– Parallel Corpora
• Domain of interest
• Bigger is better
• Time Availability
– Statistical training, resource building
Road Map
• Multilingual Challenges for MT
• MT Approaches
• MT Evaluation
MT Evaluation
• More art than science
• Wide range of Metrics/Techniques
– interface, …, scalability, …, faithfulness, ...
space/time complexity, … etc.
• Automatic vs. Human-based
– Dumb Machines vs. Slow Humans
Human-based Evaluation Example
Accuracy Criteria
5
4
3
2
1
contents of original sentence conveyed (might need minor
corrections)
contents of original sentence conveyed BUT errors in word order
contents of original sentence generally conveyed BUT errors in
relationship between phrases, tense, singular/plural, etc.
contents of original sentence not adequately conveyed, portions
of original sentence incorrectly translated, missing modifiers
contents of original sentence not conveyed, missing verbs,
subjects, objects, phrases or clauses
Human-based Evaluation Example
Fluency Criteria
5
4
3
2
1
clear meaning, good grammar, terminology and sentence
structure
clear meaning BUT bad grammar, bad terminology or bad
sentence structure
meaning graspable BUT ambiguities due to bad grammar, bad
terminology or bad sentence structure
meaning unclear BUT inferable
meaning absolutely unclear
Fluency vs. Accuracy
FAHQ
MT
conMT
Prof.
MT
Info.
MT
Fluency
Accuracy
Automatic Evaluation Example
Bleu Metric
(Papineni et al 2001)
• Bleu
–
–
–
–
–
BiLingual Evaluation Understudy
Modified n-gram precision with length penalty
Quick, inexpensive and language independent
Correlates highly with human evaluation
Bias against synonyms and inflectional variations
Automatic Evaluation Example
Bleu Metric
Test Sentence
Gold Standard References
colorless green ideas sleep furiously
all dull jade ideas sleep irately
drab emerald concepts sleep furiously
colorless immature thoughts nap angrily
Automatic Evaluation Example
Bleu Metric
Test Sentence
Gold Standard References
colorless green ideas sleep furiously
all dull jade ideas sleep irately
drab emerald concepts sleep furiously
colorless immature thoughts nap angrily
Unigram precision = 4/5
Automatic Evaluation Example
Bleu Metric
Test Sentence
Gold Standard References
colorless green ideas sleep furiously
colorless green ideas sleep furiously
colorless green ideas sleep furiously
colorless green ideas sleep furiously
all dull jade ideas sleep irately
drab emerald concepts sleep furiously
colorless immature thoughts nap angrily
Unigram precision = 4 / 5 = 0.8
Bigram precision = 2 / 4 = 0.5
Bleu Score = (a1 a2 …an)1/n
= (0.8 ╳ 0.5)½ = 0.6325  63.25
Metrics MATR Workshop
• Workshop in AMTA conference 2008
– Association for Machine Translation in the Americas
• Evaluating evaluation metrics
• Compared 39 metrics
– 7 baselines and 32 new metrics
– Various measures of correlation with human judgment
– Different conditions: text genre, source language,
number of references, etc.
Interested in MT??
• Contact me ([email protected])
• Research courses, projects
• Languages of interest:
– English, Arabic, Hebrew, Chinese, Urdu, Spanish,
Russian, ….
• Topics
– Statistical, Hybrid MT
• Phrase-based MT with linguistic extensions
• Component improvements or full-system improvements
– MT Evaluation
– Multilingual computing
Thank You
Descargar

Semitic Linguistic Phenomena