y
T ( x  x)
TV ( x  x)
TH
pendiente y(x)
pendiente y( x  x)
TH
TV (x)
T (x)
W
x
x  x
TV ( x  x)  TH  y( x  x)
y
T ( x  x)
TV ( x  x)
TV ( x)  TH  y( x)
TH
pendiente y(x)
pendiente y( x  x)
TH
TV (x)
T (x)
es una porción de la carga total de
la base del puente, y se supone
que se distribuye uniformemente a
lo largo del eje x
W
x
W    x
x  x
Peso de la carga por unidad de longitud
TV ( x  x)  TV ( x)  W
TH  y( x  x)  TH  y( x)  W
y ( x) 
W
y( x  x)  y( x) 
TH
 x2
TH 2
y( x) 
y( x  x)  y( x) 

TH
x
y( x  x)  y( x) 

x
TH

TH
y ( x) 
h
TH 
 x
TV ( x)  TH  y( x)  TH
2
y
TH 2
x
TH
 x
1/ 2
 L
2
T ( x)     2  x 
 4h

4
 L
2
TH 2
 L2
h
h 2
L
L
Descargar

Diapositiva 1 - Universidad de Antofagasta