EJERCICIOS RESUELTOS ANOVA
1.
En un experimento se compararon tres métodos de enseñar un idioma extranjero; para evaluar la instrucción, se
administró una prueba de vocabulario de 50 preguntas a los 24 estudiantes del experimento repartidos de a ocho por
grupo.
a) ¿Cuál es la variable respuesta y la explicativa en este estudio?
R:
La variable respuesta es el puntaje en la prueba de vocabulario
La variable explicativa son los métodos de enseñanza (auditivo, traducción y combinado). Es un factor con 3 niveles.
b) Complete la tabla de ANOVA:
Suma de
cuadrados
Gl
Media
cuadrática
F
Sig.
Inter-grupos
323.792
Intra-grupos
21
Total
1460.958
.002
R:
Tabla de ANOVA
Inter-grupos
Intra-grupos
Total
Suma de
cuadrados
gl
Media cuadrática
F
Sig.
647.584
2
323.792
8.360
.002
813.374
21
38.732
1460.958
23
Pasos para completar la tabla:
1. Calculo los grados de libertad, en el total son n-1 y n=24, por lo tanto son 23. Los grupos a comparar son 3 por
lo tanto los gl Inter son 2, verifico que (2+21) son los 23 del total.
2. La suma de cuadrados Inter se obtiene multiplicando la media cuadrática por los gl, i.e. 323.792*2=647.584
3. Teniendo la SC Inter, saco la SC Intra restando 1460.958-647.584=813.374
4. Con la SC Intra y los gl calculo la media cuadrática Intra =813.374/21=38.732
5. Por último con las dos MC calculo el test F=323.792/38.732=8.360
c) Qué supuestos debería verificar el investigador, escriba las hipótesis asociadas a ellos.
R:
El investigador antes de comparar las medias, debe verificar los supuestos de Normalidad y de Homogeneidad de
las varianzas (el supuesto de independencia se comprueba en el diseño, dividió a 8 estudiantes por cada método).
Hipótesis:
1) Normalidad: Necesita realizar 3 pruebas de hipótesis, una para cada grupo del tipo:
H 0 : los puntajes
del grupo i son normales
H 1 : los puntajes
del grupo i NO son normales .
donde i representará cada método de enseñanza: auditivo, traducción y combinado.
2) Homocedasticidad: la hipótesis es:
H 0 : 1  
2
2
2
3
2
H 1 : al menos una varianza
difiere
Donde 1= método auditivo, 2= método traducción, 3= método combinado.
d) Asuma que se cumplen los supuestos y realice la prueba de interés para el investigador.
Informe la conclusión del estudio.
R:
Si se cumplen los supuestos, entonces podemos comparar las medias de los métodos de enseñanza usando el test F
de la ANOVA:
Hipótesis:
H 0 : 1   2   3
H 1 : al menos dos medias no son iguales .
de la tabla de ANOVA sacamos el test F=8,36 al que corresponde un valor-p de 0,002, este valor-p es menor que el nivel
de significación de 0,05, por lo tanto rechazamos la hipótesis nula y concluimos que existen diferencias significativas
entre las medias de los métodos de enseñanza al 5%.
2. Un exceso de ozono es una señal de contaminación. Se tomaron seis muestras de aire de concentraciones de ozono
(en partes por 10 mil) en cuatro ciudades de la séptima región (Curicó, Talca, Linares y Maule) y se determinó el
contenido de ozono. Use las salidas de SPSS para llevar a cabo el Análisis de Varianza (ANOVA) paso a paso.
Al final informe sobre la situación del ozono a las autoridades regionales.
R: Pasos, primero describimos los datos:
Tabla: Medidas descriptivas de las mediciones de Ozono en ciudades de la VII región
Ozono
N
Media
Desviación
típica
Error típico
Curicó
6
8.17
1.472
.601
Talca
6
10.00
1.265
.516
Linares
6
13.50
2.429
.992
Maule
6
8.50
2.345
.957
Total
24
10.04
2.820
.576
Si ordenamos los promedios vemos que en Curicó se obtiene el promedio más bajo de ozono, luego está Maule,
Talca y Linares. Llama la atención que en Linares se den promedio mayores que en Talca que es una ciudad mayor.
Deberíamos mostrar un gráfico de caja, pero no tenemos los datos.
Segundo, verificamos los supuestos, primero el supuesto de independencia se cumple ya que los datos son de distintas
ciudades, hay independencia; seguimos con el de Normalidad (usaremos el Test de Kolmogorov-Smirnov):
H 0 : la distribuci
ón de ozono de Curicó es normal
H 1 : la distribuci
ón de ozono de Curicó NO es normal
Estadístico de KS= 0,214, valor-p=0,2 mayor que 0,05 por lo tanto acepto normalidad
H 0 : la distribuci
ón de ozono de Talca es normal
H 1 : la distribuci
ón de ozono de Talca NO es normal
Estadístico de KS= 0,285, valor-p=0,138 mayor que 0,05 por lo tanto acepto normalidad
H 0 : la distribuci
ón de ozono de Linares es normal
H 1 : la distribuci
ón de ozono de Linares
NO es normal
Estadístico de KS= 0,102, valor-p=0,2 mayor que 0,05 por lo tanto acepto normalidad
H 0 : la distribuci
ón de ozono de Maule es normal
H 1 : la distribuci
ón de ozono de Maule NO es normal
Estadístico de KS= 0,190, valor-p=0,2 mayor que 0,05 por lo tanto acepto normalidad
Conclusión general, podemos aceptar el supuesto de Normalidad de estos datos en todas las ciudades.
Continuamos con el supuesto de homocedasticidad, realizamos el test de Levene para la hipótesis:
H 0 : 1  
2
2
2
3 
2
H 1 : al menos una varianza
2
4
difiere
Donde 1=Curicó, 2=Talca, 3=Linares y 4=Maule
Resultado según tabla: Estadístico= 1,081, valor-p=0,38, es mayor que 0,05, por lo tanto acepto la hipótesis nula y
podemos concluir que las varianzas son homogéneas. Se cumple el supuesto de homocedasticidad.
En vista que se cumplen todos los supuestos ANOVA, procedemos a comparar las medias de las mediciones
de ozono en las 4 ciudades con el test de ANOVA, la hipótesis es:
H 0 : 1   2   3   4
H 1 : al menos dos medias no son iguales .
Según la tabla el F observado es 9,418 y el valor-p es menor que 0,001, por lo tanto rechazamo la hipótesis nula, y
concluimos que existen diferencias significativas entre los promedio de ozono en estas ciudades.
Ahora nos interesa saber qué promedios son diferentes. Para eso hacemos test de comparaciones múltiples de
Tukey, que controla la tasa de error tipo I.
Mirando la tabla de la salida de SPSS podemos construir la siguiente tabla con los promedios ordenados de menor a mayor:
Ciudades
1
Curicó
8.17
Maule
8.50
Talca
10.00
Linares
2
13.50
Informe:
Después de estudiar los datos, podemos llegar a una conclusión global de que Curicó, Maule y Talca tienen
promedios similares de ozono, en cambio Linares aparece con niveles significativamente superiores (al 5%).
Descargar

Diapositiva 1